The exceptional influence of storm ‘Xaver’ on design water levels in the German Bight

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Dangendorf, S., Arns, A., Pinto, J. G., Ludwig, P. and Jensen, J. (2016) The exceptional influence of storm ‘Xaver’ on design water levels in the German Bight. Environmental Research Letters, 11 (5). 054001. ISSN 1748-9326 doi: 10.1088/1748-9326/11/5/054001

Abstract/Summary

Design water levels for coastal structures are usually estimated based on extreme value statistics. Since their robustness depends heavily on the sample size of observations, regular statistical updates are needed, especially after extreme events. Here, we demonstrate the exceptional influence of such an event based on storm 'Xaver', which caused record breaking water levels for large parts of the southwestern German North Sea coastline on 6 December 2013. We show that the water level estimates for a 1 in 200 years event increased by up to 40 cm due to the update after 'Xaver', a value twice as large as the estimated regional sea level rise for the entire 20th century. However, a thorough analysis of different independent meteorological (winds and pressure) and oceanographic components (tides, surges, mean sea level (MSL) anomalies) driving the event reveals that their observed combination does not yet represent the physically possible worst case scenario. Neither tides, nor surges nor MSL anomalies were at their observational maximum, suggesting that there is a realistic risk of a storm like 'Xaver' to cause even higher extreme water levels by a few decimetres under current climate conditions. Our results question purely statistical design approaches of coastal structures, which neglect the physical boundary conditions of individual extreme events.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/65959
Identification Number/DOI 10.1088/1748-9326/11/5/054001
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Institute of Physics
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar