Boedihardjo, H., Geng, X., Lyons, T. and Yang, D. (2016) The signature of a rough path: uniqueness. Advances in Mathematics, 293. pp. 720-737. ISSN 1090-2082 doi: 10.1016/j.aim.2016.02.011
Abstract/Summary
In the context of controlled differential equations, the signature is the exponential function on paths. B. Hambly and T. Lyons proved that the signature of a bounded variation path is trivial if and only if the path is tree-like. We extend Hambly–Lyons' result and their notion of tree-like paths to the setting of weakly geometric rough paths in a Banach space. At the heart of our approach is a new definition for reduced path and a lemma identifying the reduced path group with the space of signatures.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/58182 |
| Identification Number/DOI | 10.1016/j.aim.2016.02.011 |
| Refereed | No |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
| Publisher | Elsevier |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download