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The Signature of a Rough Path: Uniqueness

Horatio Boedihardjo∗, Xi Geng†, Terry Lyons† and Danyu Yang‡

October 15, 2015

Abstract

In the context of controlled di�erential equations, the signature is the

exponential function on paths. B. Hambly and T. Lyons proved that the

signature of a bounded variation path is trivial if and only if the path is

tree-like. We extend Hambly-Lyons' result and their notion of tree-like

paths to the setting of weakly geometric rough paths in a Banach space.

At the heart of our approach is a new de�nition for reduced path and a

lemma identifying the reduced path group with the space of signatures.

1 Introduction

In K.T. Chen's work [8] on the cohomology of the loop space, he de�ned and
systematically studied the formal series of iterated integrals

S (x) = 1 +
∑
i1

ˆ T

0

dxi1t1Xi1 +
∑
i1,i2

ˆ T

0

ˆ t2

0

dxi1t1dxi2t2Xi1 ·Xi2 + . . . (1.1)

where x : [0, T ]→ Rd is a path with bounded variation and X1, . . . , Xd are for-
mal non-commutative indeterminates. After proving a homomorphism property
of the map S ([8], see (2.1) below), he gave an argument [10] that the map S
restricted to appropriate classes of paths is, up to translation and reparametri-
sation, injective. Hambly and Lyons [16], motivated by the application of the
map S in rough path theory, posed the following problem:

How to characterise the kernel of the map S?

Hambly and Lyons [16] proved that for a bounded variation path x, S (x) = 1
if and only if x is tree-like. They conjectured that the result extends to weakly
geometric rough paths, a fundamental class of control paths for which controlled
di�erential equations can be de�ned. Their result directly implies that the space
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of bounded variation paths, quotiented by the space of tree-like paths, forms a
group with respect to the concatenation operation. They called this quotient
space the reduced path group.

In [18], LeJan and Qian answered a special case of Hambly-Lyons conjecture.
They proved that, when restricted on the complement of a Wiener measure zero
set, the map S (de�ned using Stratonovich integration) is injective. There has
been a number of other partial results for particular cases of weakly geometric
rough paths ([17, 3, 4, 2]). A key observation in the proof of Hambly-Lyons and
further re�ned by LeJan and Qian is that the iterated integrals of 1-forms along
a path is a linear functional of the signature of the path. It turns out that a
subtle variant of this idea, by considering the 1-form along the iterated integrals
of the path work to prove Hambly-Lyons' conjecture.

To formulate the extension of Hambly-Lyons result, we must �nd the correct
notion of tree-like weakly geometric rough paths. Hambly-Lyons' de�nition of
tree-like path is inappropriate in the setting of weakly geometric rough paths.
In fact, it is easy to prove that if x is an injective path with �nite p-variation
(p > 1), but not �nite 1-variation, then S (x ?←−x ) = 1 but x ?←−x won't be tree-
like in the sense of Hambly-Lyons. A tree-like path x (in the sense of Hambly-
Lyons) has the property that there exists a continuous function h : [0, 1] → R,
ht ≥ 0 for all t ∈ [0, 1], h1 = h0 and

hs = ht = inf
s≤u≤t

hu =⇒ xs = xt.

We will take an equivalent formulation of this property (see [13, 15]) as the
de�nition of tree-like path, as follows.

De�nition 1.1. Let E be a topological space. A continuous path x : [0, T ]→ E
is tree-like if there exists a R-tree τ , a continuous map φ : [0, T ]→ τ and a map
ψ : τ → E such that φ (0) = φ (T ) and x = ψ ◦ φ.

This de�nition of tree-like path is equivalent to Hambly-Lyons' de�nition
when the path has bounded variation. The tree-like paths are also interesting in
the context of homotopy. In Section 5.7 in [19], T. Levy showed that a bounded
variation path is tree-like if and only if it is contractible to the constant path
within its own image.

We will use our De�nition 1.1 of tree-like path to extend Hambly-Lyons'
result to weakly geometric rough paths in Banach spaces. The assumptions
on the tensor product, which is only needed in the in�nite dimensional case,
and the issue of de�ning the map S for weakly geometric rough paths will be
discussed in Section 2.1.

Theorem 1.1. Let V be a Banach space such that the tensor powers of V is
equipped with a family of tensor norms satisfying (2.2), (2.3) and (2.4). Let
x be a weakly geometric rough path in V . Then S (x) = 1 if and only if x is
tree-like in the sense of De�nition 1.1.

Remark 1.1. If S (x) = 1, then we even know what a corresponding τ ,φ and
ψ in De�nition 1.1 are. Here τ is the set of signatures equipped with a special
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metric (see Theorem 4.1), φ is the path t → S (x)0,t and ψ is the projection

map π(bpc) if x ∈WGΩp (V ) (see Section 2.1 for notations).

Remark 1.2. Our proof does not make use of Hambly-Lyons' result and hence
in the case p = 1, we have given a new and simple proof of Hambly-Lyons'
theorem in [16].

Theorem 1.1 has the same implications for weakly geometric rough paths as
Hambly-Lyons' for bounded variation paths. As part of the proof (see Lemma
4.6), we will also show that the map S is an isomorphism from the reduced paths
(an analytic notion) to signatures (an algebraic structure). T. Lyons and W.
Xu [23] have proposed inversion schemes for recovering the reduced paths from
signatures for C1 paths.

The more di�cult implication in Theorem 1.1 is �S (x) = 1 implies x is
tree-like�. Our de�nition of tree-like weakly geometric rough paths gives rise to
a natural strategy of proof, namely to �rst show that the space of signatures
of paths has a R-tree structure. A key Lemma in our approach is to identify
signatures with injective paths on signatures (see Section 4.3). This Lemma
translates the natural R-tree structure of the latter to a R-tree structure for the
former (see Section 4.4 and Section 4.5). To identify signatures with injective
paths on signatures, we use that for su�ciently smooth 1-form α and N ∈ N, if
paths x and y have the same signature and SN denotes the truncated signature
at degree N , then

ˆ
α
(

dSN (x)0,t

)
=

ˆ
α
(

dSN (y)0,t

)
(see Section 4.1 and 4.2). That we need to integrate against the truncated
signature path SN (x) as opposed to merely integrating against the path x itself
is an important new idea.

2 The signature of a path

We will follow Hambly-Lyons' [16] and view the map S as taking value in the
formal series of tensors so that

S (x) = 1 +

ˆ T

0

dxt1 +

ˆ T

0

ˆ t2

0

dxt1 ⊗ dxt2 + . . . .

The formal series of tensors S (x) is called the signature of the path x. The
signature has a natural homomorphism property with respect the operations of
concatenation and reversal. More precisely, given a Lie group G and continuous
paths x : [0, T1] → G and y : [0, T2] → G, we de�ne the concatenation product
? by

x ? y (t) =

{
x (t) , t ∈ [0, T1] ;

x (T1) y (0)
−1
y (t− T1) , t ∈ (T1, T1 + T2]
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and the reversal operation ←−· by

←−x (t) = x (T1 − t) , t ∈ [0, T1] .

K.T. Chen proved two fundamental algebraic properties of the map S, which in
the language of tensors can be stated as :

1. (K.T. Chen, [8])The map S satis�es

S (x ? y) = S (x)⊗ (y) ; S (x)⊗ S (←−x ) = 1. (2.1)

In the rough path literature, the �rst identity in (2.1) is now known as
Chen's identity.

2. (K.T. Chen, [9])The natural logarithm of S, in the space of non-commutative
formal power series, is a Lie series.

Hambly-Lyons' characterisation of the kernel of the map S implies that the
tree-like relation ∼ , de�ned for continuous bounded variation paths x and y by

x ∼ y ⇐⇒ x ?←−y is tree-like,

is an equivalence relation. Moreover, the space of continuous bounded variation
paths in Rd, quotiented by the relation ∼, is a group with respect to the binary
operation ? and the inverse ←−· . Our main result Theorem 1.1 implies that the
same holds with bounded variation paths replaced by weakly geometric rough
paths.

2.1 Setting for rough path theory

We brie�y recall the notations and settings in rough path theory, which will be
identical to that in Lyons-Qian's book [21].

Let V be a Banach space. Let ⊗ be a tensor product such that the tensor
powers of V ,(V ⊗n : n ≥ 1), is equipped with a family (‖·‖V ⊗n : n ≥ 1) of norms
satisfying:

1. for m,n ∈ N and for all u ∈ V ⊗m and v ∈ V ⊗n,

‖u⊗ v‖V ⊗(n+m) ≤ ‖u‖V ⊗m ‖v‖V ⊗n ; (2.2)

2. for any permutation σ of {1, . . . , n},

‖v1 ⊗ . . .⊗ vn‖V ⊗n =
∥∥vσ(1) ⊗ . . .⊗ vσ(n)∥∥V ⊗n ; (2.3)

3. for any bounded linear functionals f on V ⊗m and g on V ⊗n, there exists
a unique bounded linear functional, denoted as f ⊗g, on V ⊗(m+n) such that for
all u ∈ V ⊗m and v ∈ V ⊗n,

f ⊗ g (u⊗ v) = f (u) g (v) . (2.4)

4



A family of tensor norms satisfying conditions 1. and 2. are called a family of
admissible tensor norms (see De�nition 1.25 in [22]). By convention, we de�ne
V ⊗0 by R. The projective tensor product ‖·‖∨, de�ned for v ∈ V ⊗n by

‖v‖∨ = inf

{∑
k

∣∣vk1 ∣∣ . . . ∣∣vkn∣∣ : v =
∑
k

vk1 ⊗ . . .⊗ vkn, vki ∈ V

}
,

satis�es conditions 1.-3 (Section 5.6.1 in [21]). We will use the shorthand ‖·‖ to
denote ‖·‖V ⊗i and ab to denote a⊗ b where there is no confusion.

Let T ((V )) be the formal series of tensors (De�nition 2.4 [22]) and T (n) (V )
be the truncated tensor algebra up to degree n (De�nition 2.5 [22]). Let πn
and π(n) denote, respectively, the natural projection map from T ((V )) onto
V ⊗n and T (n) (V ). Let L ((V )) denote the Lie formal series over V (De�ni-
tion 2.2 [22]). Let T̃ ((V )) and T̃ (n) (V ) denote the subspaces of T ((V )) and
T (n) (V ) respectively such that π0 (a) = 1 for all a ∈ T̃ ((V )) or T̃ (n) (V ).
Let G(∗) = exp (L ((V ))) be the space of group-like elements (p37 [22]) and
G(n) = π(n)

(
G(∗)) denote the free nilpotent Lie group of step n (p37 [22]). We

will equip G(n) with the metric

d (a, b) = max
i∈{1,...,n}

∥∥πi (a−1b)∥∥ 1
i .

De�nition 2.1. Let G
(∗)
p.r.c (p.r.c. for positive radius of convergence) denote

respectively the element a in G(∗) such that

max
i∈N
‖πi (a)‖

1
i <∞.

We will equip G
(∗)
p.r.c. with the metric

d (a, b) = max
i∈N

∥∥πi (a−1b)∥∥ 1
i

(see Lemma 1.1 in [5] for a proof of the symmetric property of d). Let E be a
metric space. We say a continuous function x : [0, T ]→ E has �nite p-variation
if

‖x‖p−var = sup
P

(∑
ti∈P

d
(
xti , xti+1

)p) 1
p

<∞

where the supremum is taken over all partitions P of [0, T ].

De�nition 2.2. The space of weakly geometric rough paths, WGΩp (V ), is the
set of all continuous functions from a compact interval [0, T ] to G(bpc) with �nite
p-variation.

For x, y ∈WGΩp (V ) such that x0 = y0, we de�ne the p-variation metric

dp−var (x, y) = max
1≤i≤bpc

sup
P

∑
tj∈P

∥∥∥πi (x−1tj xtj+1
− y−1tj ytj+1

)∥∥∥ p
i

 i
p

.

We will use 1 to denote the identity element with respect to ⊗ in T ((V )).
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Proposition 2.1. (Extension Theorem, Theorem 2.2.1 [20] and Corollary 3.9
in [7]) Let x ∈ WGΩp (V ). There exists a unique continuous path S (x)0,· :

[0, T ]→ G
(∗)
p.r.c with �nite p-variation such that S (x)0,0 = 1 and π(bpc)

(
S (x)0,t

)
=

x−10 xt. We will call S (x)0,T the signature of x.

We will often omit the subscript and use the shorthand S (x) for the signature
of x. We will also use SN (x) to denote π(N) (S (x)).

3 Tree-like paths have trivial signature

3.1 Preliminary de�nitions

De�nition 3.1. Let V be a topological space and let x : [a, b]→ V , x̃ : [c, d]→
V be continuous paths taking value in V . We say x is a reparametrisation of x̃
if there exists a homeomorphism σ of [c, d] onto [a, b] such that xσ(t) = x̃t for
all t.

De�nition 3.2. Let τ be a R-tree and a, b ∈ τ , we will use the notation [a, b]
to denote the unique (up to reparametrisation) injective continuous function
x : [0, T ]→ τ on some compact interval [0, T ] such that x0 = a and xT = b.

De�nition 3.3. Let V be a topological space. A rooted loop in V is a continuous
function x : [s, t] → V (s ≤ t) such that xs = xt. The element xs is known as
the root of x.

De�nition 3.4. Let τ be a R-tree and r ∈ τ . We may de�ne a partial order �
with respect to r on τ by

a � b ⇐⇒ [r, a] ⊆ [r, b] . (3.1)

3.2 The central case

Lemma 3.1. Let τ be a R-tree and φ : [0, T ] → τ be a rooted loop. Suppose
there exists a partition P = (t0, . . . , tn) of [0, T ] such that if ti, ti+1 are adjacent
points in P, then φ|[ti,ti+1] is (not necessarily strictly) monotone with respect to

the root of φ. If ψ : τ → Gbpc is such that ψ ◦ φ ∈ WGΩp (V ), then ψ ◦ φ has
trivial signature.

Proof. We will prove by induction on |P|. In the case |P| = 2, as φ|[0,T ]

is monotonic and φ (0) = φ (T ), φ is forced to be constant. In particular,
S (ψ ◦ φ) = 1. For the induction step, let τmax ∈ φ (P) be such that there does
not exists s ∈ φ (P), s � τmax. Let ti ∈ P be such that φ (ti) = τmax. Since
φ (ti−1) � φ (ti), φ (ti+1) � φ (ti) and the set {t|t � φ (ti)} is totally ordered, we
may assume, without loss of generality, that φ (ti−1) � φ (ti+1). Let t′ ∈ [ti−1, ti]
be such that φ (t′) = φ (ti+1). Then φ|[0,t′]∪[ti+1,T ] is piecewise monotone with
respect to the partition P\ {ti}. Therefore, by induction hypothesis,

S
(
ψ ◦ φ|[0,t′]∪[ti+1,T ]

)
= 1. (3.2)
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As φ|[t′,ti] and φ|[ti,ti+1] are the unique injective curves connecting φ (ti) and
φ (ti+1) with opposite orientation, by the homomorphism property of signature
(see Lemma 1.3 in [5]),

S
(
ψ ◦ φ|[t′,ti]

)
⊗ S

(
ψ ◦ φ|[ti,ti+1]

)
= 1 .

Hence S
(
ψ ◦ φ|[t′,ti+1]

)
= 1 which implies, by (3.2) and Chen's identity, that

S (ψ ◦ φ) = 1.

3.3 Reducing to the central case

We will need the following result of general topology from [6], which allows us
to erase loops from a continuous path to obtain an injective continuous path.

Lemma 3.2. (R. Börger [6])Let X be a Hausdor� space and let ϕ : [0, 1] →
X be continuous with ϕ (0) 6= ϕ (1). Then there exist a closed subset A ⊂
[0, 1], a continuous and order-preserving map q : [0, 1]→ [0, 1], and an injective
continuous map ψ : [0, 1]→ X with the following properties:

(i)ψ (0) = ϕ (0),ψ (1) = ϕ (1).
(ii)ψ ◦ q|A = ϕ|A.
(iii)q|A : A→ [0, 1] is surjective.

Remark 3.1. The Lemma holds with [0, 1] replaced by any interval [0, T ], T > 0.

Proof of the "tree-like paths have trivial signature" part of Theorem 2.1. Using the
notation in De�nition 1.1, let the functions φ : [0, T ]→ τ and ψ : τ → G(bpc) be
a factorisation for the tree-like path x. Let � be the natural partial order (see
De�nition 3.4) with respect to the root of φ. For any a, b ∈ τ , we de�ne a ∧ b
to be the unique element of τ such that

[φ (0) , a ∧ b] = [φ (0) , a] ∩ [φ (0) , b]

(see Lemma 2.3 in [11] for the existence of a∧ b). Let P be a partition of [0, T ].
Let

B = {φ (ti1) ∧ . . . ∧ φ (tin) : ti1 , . . . , tin ∈ P, n ≤ |P|} .

The set B can be interpreted as the set of branched points in the subtree of τ
spanned by φ (P). Note that for any b1, b2 ∈ B we have b1 ∧ b2 ∈ B. De�ne a
sequence (si) by s0 = 0,

si+1 = inf {v > si : φ (v) ∈ B\ {φ (si)}} .

By the continuity of φ and the �niteness of B, (si) is a �nite sequence. Let
P ′ = (si). For each si, we construct an injective path x

si,si+1
· in τ in the

following way: if we apply Lemma 3.2 to erase loops from the path

ϕ (t) =
(
φ|[si,si+1], ψ ◦ φ|[si,si+1]

)
∈ τ × V, (3.3)
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we obtain a continuous injective path η in τ × V . The path x
si,si+1
· is the

projection of η onto τ . De�ne φ′ : [0, T ]→ τ so that for each si ∈ P ′

φ′ (t) = φ (t) , t ∈ P ′

= x
si,si+1

t , si ≤ t ≤ si+1

and let xP
′

:= ψ ◦ φ′. As the self-intersection of ϕ in (3.3) coincides with the
self-intersection with of φ|[si,si+1], the path xP

′ |[si,si+1] is a natural projection

of η (see line below 3.3) onto V . Therefore, xP
′ |[si,si+1] is continuous for all i.

We now show that if si−1, si are adjacent points in P ′, then either φ (si−1) �
φ (si) or φ (si) � φ (si−1). As stated in Lemma 2.1 in [11], the image of the
continuous path φ|[si,si+1] in a R-tree must contain [φ (si) , φ (si+1)] and in par-
ticular the element φ (si)∧φ (si−1). As φ (si)∧φ (si−1) ∈ B, by the construction
of the sequence (si), φ (si) ∧ φ (si−1) must be either equal to φ (si) or φ (si+1).

In particular, φ′ is piecewise monotone. Since the p-variation of xP
′
is dom-

inated by the p-variation of x, xP
′ ∈ WGΩp (V ). Therefore, xP

′
satis�es the

assumptions of the central case, Lemma 3.1, and hence has trivial signature.
Let Pn be a sequence of partitions such that |Pn| → 0 as n → ∞. Let
P ′n be the corresponding sequence constructed as above. Trivially, we have∥∥∥xP′n∥∥∥

p−var
≤ ‖x‖p−var. As |P ′n| → 0, xP

′
n converges uniformly to x. By

Lemma 1.5 in [5], there exists a subsequence xP
′
nk such that S

(
xP
′
nk

)
→ S (x)

as k →∞. As S
(
xP
′
nk

)
= 1 for all k, the result follows.

4 Paths with trivial signature are tree-like

4.1 A special functional on signature

The following is a key ingredient in the proof of our main result. It estab-
lishes a relation between a weakly geometric rough path x ∈WGΩp (V ) and its
signature other than the one given in the Extension Theorem 2.1.

Lemma 4.1. (Integration of 1-form is a functional of signature)Let x, y ∈
WGΩp

(
Rd
)
, π1 (x0) = π1 (y0) = 0 and S (x) = S (y). Then for any N ∈ N and

any CKc 1-form ψ on Rd with K > p− 1, we have

ˆ
ψ (dxu) =

ˆ
ψ (dyu) . (4.1)

Proof. Suppose that

ψ (dx) =

d∑
i=1

ψi (x) dxi.

Assume for now that {ψi} were all polynomial functions. Then each ψi (π1 (xu))
can be expressed as a linear functional (independent of path x and time u) of

8



S (x)0,u (see Theorem 2.15 [22]). Since

S (x) = 1 +

ˆ T

0

S (x)0,t ⊗ dxt,

the integral
´
ψ (π1 (xu)) dxu is also a linear functional, independent of x, of

S (x) and the desired result holds when ψi are polynomials for all i. It now
su�ces to note that functions in CKc can be approximated by polynomials in
the Lip(K)-norm ([1]) and the map

ψ →
ˆ
ψ(dz)

is continuous in the Lip(K)-norm for K > p− 1 ([14], Theorem 10.50).

4.2 Finite dimensional projection of the signature path

As pointed out in the introduction, the class of functionals{
x→

ˆ
ψ (dx) : ψ smooth 1-forms

}
is insu�cient to separate signatures. Indeed, if x and y are any weakly geometric
rough paths, then for any smooth 1-form, the additivity of integral will imply
that ˆ

ψ (d (x ? y)) =

ˆ
ψ (d (y ? x)) ,

whereas in general S (x ? y) 6= S (y ? x). Therefore, we will consider a larger
class of functionals, namely{

x→
ˆ
ψ
(

dS (x)0,t

)
: ψ smooth 1-forms

}
,

if we could at all make sense of the integral. However, the �nite dimensional
nature of Lemma 4.1 forces us to use �nite dimensional projection. We �rst

truncate the path in G
(∗)
p.r.c. to a path in G(n) (V ) and show that a path in

G(n) (V ) with �nite p-variation can be lifted to a p-weakly geometric rough
path. Then we project the in�nite dimensional space V to Rd using a linear
map Φ. In Section 4.2.1, we will make sense of the integral

ˆ
ψ
(

dΦ ◦ SN (x)0,t

)
for a bounded linear functional Φ on

⊕N
i=1 V

⊗i, a smooth 1-form ψ, a weakly
geometric rough path x and N ∈ N. In Section 4.2.2., we will show that for
any two disjoint pieces of signature paths, there will be a �nite dimensional
projection so that their images remain separated.
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4.2.1 Integration against the signature path

Let x be a weakly geometric rough path. In order to apply Lemma 4.1 to SN (x),

we need to lift SN (x)0,· as a weakly geometric rough path. LetW =
⊕N

i=1 V
⊗i.

We will implicitly identify W⊗n with
⊕N

i1,...,in=1 V
⊗(i1+...+in). Let πi1,...,in de-

note the projection of
⊕N

i1,...,in=1 V
⊗(i1+...+in) to the component (i1, . . . , in).

We will equip W⊗n with the norm

‖v‖W⊗n =
∑

1≤i1,...,in≤N

‖πi1,...,in (v)‖V ⊗(i1+...+in) . (4.2)

It is easy to see that the family of tensor norms ‖ · ‖W⊗n is admissible. In this
section, we will use the notation πk to denote the projection from T ((W )) onto
W⊗k.

Lemma 4.2. Let N ∈ N. There exists a map J : WGΩp (V )→WGΩp

(⊕N
i=0 V

⊗i
)

such that for all x ∈WGΩp (V ):
1. π1 (J (x)) = SN (x)0,·;
2. If x, y ∈WGΩp (V ) is such that S (x) = S (y), then S (J (x)) = S (J (y)).

Proof. Suppose for now that x is a path with bounded variation and S (x) =(
1, X1, X2, . . .

)
where Xi ∈ V ⊗i. Then we may de�ne J by condition 1. in the

Lemma. We de�ne:
1. for v1 ∈ V ⊗k1 , . . . , vn ∈ V ⊗kn , a map Fm1,...,mn

(v1, . . . , vn) on V ⊗(m1+...+mn)

so that for all w1 ∈ V ⊗m1 , . . . , wn ∈ V ⊗mn ,

Fm1,...,mn
(v1, . . . , vn) [w1 ⊗ . . .⊗ wm1+...+mn

]

= v1 ⊗ w1 ⊗ . . .⊗ wm1
⊗ v2 ⊗ wm1+1 ⊗ . . .⊗ wm1+m2

⊗ . . .⊗ vn ⊗ wm1+...+mn−1+1 ⊗ . . .⊗ wm1+...+mn
;

2. for a permutation σ on {1, . . . , n}, a map on V ⊗n, also denoted by σ, by

σ (v1 ⊗ . . .⊗ vn) = vσ(1) ⊗ . . .⊗ vσ(n);

3. for j1, . . . , jn ∈ N, OS (j1, . . . , jn) as the set of ordered shu�es (see p72 [22]).
By Chen's identity (2.1),

πi1,...,in

(
S (J (x))s,t

)
(4.3)

=

ˆ
s<s1<...<sn<t

dXi1
0,s1
⊗ . . .⊗ dXin

0,sn
(4.4)

=

in∑
jn=1

. . .

i1∑
j1=1

Fj1,...,jn

(
Xi1−j1

0,s , . . . , Xin−jn
0,s

)[ˆ
s<s1<...<sn<t

dXj1
s,s1 ⊗ . . .⊗ dXjn

s,sn

]

=

in∑
jn=1

. . .

i1∑
j1=1

Fj1,...,jn

(
Xi1−j1

0,s , . . . , Xin−jn
0,s

) ∑
π∈OS(j1,...,jn)

π
(
Xj1+...+jn
s,t

) . (4.5)
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The �nal identity (4.5) uses identity (4.9) in [22].
We �rst restrict our attention to the �nite dimensional case. For x ∈

WGΩp
(
Rd
)
, we will de�ne J (x) so that (4.3) holds. To show that J (x) is

a weakly geometric rough path, we observe that if x were to have bounded vari-

ation, then S (J (x)) will satisfy Chen's identity and lie in G
(∗)
p.r.c (G

(∗)
p.r.c here

refers to group-like elements over
⊕N

i=0 V
⊗i instead of V ). For x ∈WGΩp

(
Rd
)
,

let p′ > p and let xn be a sequence of bounded variation paths converging in
dp′−var to x (see Corollary 8.26 in [14] for the existence of such sequence). As
S (xn) → S (x) as n → ∞ (Corollary 9.11 in [14]), each S (J (xn)) satis�es

Chen's identity (2.1) and lies in G
(∗)
p.r.c.. We see by taking limit that S (J (x))

will still satisfy Chen's identity and lie in G
(∗)
p.r.c. Moreover, for all terms in the

sum in (4.5) j1+ . . .+jn ≥ n, which implies that S (J (x)) has �nite p-variation.

Therefore, J maps WGΩp (V ) to WGΩp

(⊕N
i=0 V

⊗i
)
. The expression (4.5)

gives not just the expression for J (x) but also for the signature of J (x), which
in particular implies the signature of the map J (x) is determined by the sig-
nature of x. The in�nite dimensional case of this result is included as Lemma
1.2 in [5]

Lemma 4.3. Let W be a Banach space and Φ : W → Rd be a continuous linear
functional on W . Then there exists a map F : WGΩp (W )→WGΩp

(
Rd
)
such

that for all x ∈WGΩp (W ):
1. π1 (F (x)) = Φ (π1 (x)) ;
2. If x, y ∈ WGΩp (W ) is such that S (x) = S (y), then S (F (x)) =

S (F (y)).

Proof. For any linear map Φ : W → Rd, by the admissiblity conditions (2.2)
and (2.4) of the tensor product, we may continuously extend Φ to a bounded
linear operator on T (N) (W ) such that for w1, . . . , wN ∈W ,

Φ (w1 ⊗ . . .⊗ wN ) = Φ (w1)⊗ . . .⊗Φ (wN ) .

Let x ∈ WGΩp (W ). As Φ is a bounded linear operator and the family of
tensor norms on (W⊗n : 1 ≤ n ≤ N) satis�es the admissibility conditions (2.2)
and (2.4), Φ (x) has �nite p-variation. As Φ is a homomorphism with respect
to ⊗, for all t ≥ 0, Φ (xt) lies in the bpc-step free nilpotent Lie group Gbpc over
Rd. Therefore, Φ (x) ∈ WGΩp

(
Rd
)
. By construction, π1 (Φ (x)) = Φ (π1 (x)).

Moreover, again by the homomorphism property of Φ and admissibility condi-
tions (2.2) and (2.4) of the tensor norms, we have

Φ (SN (x)) = SN (Φ (x))

which implies property 2. in the Lemma.

4.2.2 Separation of signature paths

The following two lemmas together will tell us that with a careful choice of trun-
cation or �nite dimensional projection, the images of disjoint signature paths
will remain disjoint.
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Lemma 4.4. Let ∆ =
{

(s, t) ∈ [0, T ]
2

: s ≤ t
}
. Let S : [0, T ] → G

(∗)
p.r.c be an

injective path. Then for any ε > 0, there exists N(ε) ∈ N, such that π(N) (Ss) 6=
π(N) (St) for every N ≥ N(ε) and (s, t) ∈ ∆ with |t− s| ≥ ε.

Proof. Let ∆ε = {(s, t) ∈ ∆ : t− s ≥ ε}. For each (s, t) ∈ ∆ε, since S (x)0,s 6=
S (x)0,t , there exists some Ns,t ∈ N such that

SNs,t (x) 0,s 6= SNs,t (x) 0,t. (4.6)

By continuity, (4.6) holds in an open neighbourhood of (s, t). The result then
follows easily from the compactness of ∆ε.

Lemma 4.5. Let V be a Banach space, and K,L be two disjoint compact subsets
of V . Then there exists d ∈ N and a continuous linear functional Φ : V → Rd,
such that Φ(K) and Φ(L) are disjoint in Rd.

Proof. By Hahn-Banach theorem, for each κ ∈ K and λ ∈ L, there exists a
bounded linear functional fκ,λ : V → R such that

fκ,λ (κ) 6= fκ,λ (λ) .

Fix λ ∈ L. By the continuity of fκ,λ for each κ ∈ K and the compactness of K,
there exists κ1, . . . , κj ∈ K such that the continuous map

Φλ (·) = (fκ1,λ (·) , . . . , fκ1,λ (·))

sends the set K and {λ} to disjoint sets. By the continuity of Φλ for each λ ∈ L
and the compactness of L, there exists λ1, . . . , λj′ ∈ L such that

Φ (·) =
(
fκ1,λ1

(·) , . . . , fκj ,λ1
(·) , fκ1,λ2

(·) , . . . , fκj ,λj′ (·)
)

maps K and L to disjoint sets.

4.3 Identifying signatures with signature paths

The following Lemma lies at the heart of the proof of our main result, Theorem
1.1, and is interesting in its own right.

Lemma 4.6. (Existence and uniqueness of reduced path)Let S : [0, T ]→ G
(∗)
p.r.c

be a continuous path with �nite p-variation. There exists an injective path S̃ :[
0, T̃

]
→ G

(∗)
p.r.c., unique up to reparametrisation, such that ST = S̃T̃ and S0 =

S̃0.

Remark 4.1. In the case p = 1, the weakly geometric rough path π1

(
S̃
)
is

reduced in the sense of Hambly-Lyons [16], meaning that it is the unique, up to
translation and reparametrisation, minimiser of the set{

‖x‖1−var : x ∈WGΩ1 (V ) , S (x)0,1 = S̃−10 S̃1

}
.

For weakly geometric rough paths, we de�ne reduced path to be a weakly geo-
metric rough path x such that the path t→ S (x)0,t is injective.
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Proof. For the existence part, let S̃ : [0, T ] → G
(∗)
p.r.c be the injective path

obtained by applying Lemma 3.2 to erase the loops in S·. Then by the order
preserving property of q and (iii) in the loop erasing Lemma 3.2∥∥∥S̃∥∥∥

p−var
≤ ‖S‖p−var , (4.7)

which implies that S̃ has �nite p-variation.
For the uniqueness part, note the topological fact that two injective con-

tinuous paths are reparametrisation of each other if and only if they have the
same starting point, ending point and image (see Lemma 26 in [3]). Assume,
for contradiction, that t→ St and t→ S̃t are injective, S0 = S̃0, ST = S̃T̃ but S

and S̃ do not have the same image. We may assume without loss of generality
that S0 = S̃0 = 1. Then there exists s1 < s2 < t2 < t1 such that

S[s2,t2]

⋂(
S[0,s1]

⋃
[t1,T ]

⋃
Im
(
S̃·

))
= ∅,

S[s1,s2]

⋂
S[t2,t1] = ∅. (4.8)

It follows from the separation of �nite dimensional projection results, Lemma 4.4
and Lemma 4.5, that there exists N ∈ N and a linear operator Φ : T (N) (V )→
Rd such that (4.8) holds with S and S̃ replaced by Φ

(
π(N) (S)

)
and Φ

(
π(N)

(
S̃
) )

.

Let U1, V1, U2, V2 be bounded open neighborhoods of Φ
(
π(N) (S)

)
[t2,t1], Φ

(
π(N) (S)

)
[s1,s2],

Φ
(
π(N) (S)

)
[s2,t2], Φ

(
π(N) (S)

)
[0,s1]

⋃
[t1,T ]

⋃
Im
(

Φ
(
π(N)

(
S̃·
)))

respectively, such

that
U1

⋂
V1 = ∅, U2

⋂
V2 = ∅.

Let f1, f2 ∈ C∞c
(
Rd
)
be such that for i = 1, 2,

fi (X) =

{
1, X ∈ Ui;
0, X ∈ Vi.

Consider the 1-form ϕ = f2df1. As the path u→ π(bpc) (Su) is a weakly geomet-
ric rough path, Lemma 4.2 and Lemma 4.3 together states that Φ

(
π(N) (S·)

)
can be canonically lifted as a weakly geometric rough path. Moreover, the sig-
nature of Φ

(
π(N) (S·)

)
is a function of ST . It follows that the integration of

1-form against Φ
(
π(N) (Su)

)
can be de�ned and

ˆ T

0

ϕ
(

dΦ
(
π(N) (Su)

))
=

ˆ t2

s2

df1

(
Φ
(
π(N) (Su)

))
= 1,

while ˆ T̃

0

ϕ
(

dΦ
(
π(N)

(
S̃u

) ))
= 0.

This leads to a contradiction to Lemma 4.1 which states that the integral of
1-form is a functional of the signature.
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4.4 Completing the proof

De�nition 4.1. Let Sp denote the set of injective continuous paths in G
(∗)
p.r.c

with �nite p-variation starting at 1. De�ne a relation � on Sp by

x � y ⇐⇒ ∃t ≥ 0, x is a reparametrisation of y|[0,t].

Lemma 4.7. The space (Sp,�) is a partially ordered set such that:
1. Sp has a least element 1· : [0, 0]→ 1.

2. For all S ∈ Sp, the set
{
Ŝ ∈ Sp : Ŝ � S

}
is totally ordered.

3. For all S, S̃ ∈ Sp, there exists an element S ∧ S̃ ∈ Sp, unique up to
reparametrisation, such that{

Ŝ ∈ Sp : Ŝ � S, Ŝ � S̃
}

=
{
Ŝ ∈ Sp : Ŝ � S ∧ S̃

}
. (4.9)

4. The function ‖·‖pp−var : S → ‖S‖pp−var has the property that ‖1‖pp−var = 0

and, for all S the restriction of ‖·‖pp−var on the set
{
Ŝ ∈ Sp : Ŝ � S

}
is strictly

increasing.

Proof. The only non-trivial statement is statement 3. The uniqueness follows
trivially from (4.9). We now show the existence. Let

t = sup
{
t̂ ∈ [0, T ] : St̂ ∈ S̃[0,T̃ ]

}
.

We �rst show that the inclusion ⊇ in (4.9) holds with S ∧ S̃ replaced by S|[0,t].
By the continuity of S and that S̃[0,T̃ ] is closed, there exists t̃ such that St = S̃t̃.

This implies S|[0,t] is a reparametrisation of S̃|[0,t̃] by the uniqueness of reduced
path, Lemma 4.6. In particular, S|[0,t] � S̃ and the desired inclusion follows.

Conversely, if Ŝ � S and Ŝ � S̃, then there exists t̂ such that Ŝ is a
reparametrisation of S|[0,t̂] and hence St̂ ∈ S̃[0,T̃ ]. In particular, t̂ ≤ t and

Ŝ � S|[0,t].

Proposition 4.1. For S(1), S(2) ∈ Sp, de�ne

d
(
S(1), S(2)

)
=

∥∥∥S(1)
∥∥∥p
p−var

+
∥∥∥S(1)

∥∥∥p
p−var

− 2
∥∥∥S(1) ∧ S(2)

∥∥∥p
p−var

.

Then (Sp, d) is a R-tree.

Proof. By Proposition 3.10 in [12] (or see Lemma 1.7 in [5]), a partially ordered
set satisfying 1.-4. in Lemma 4.7 is a R-tree with metric d.

Let
(
Gp, dGp

)
denote the metric space de�ned as the pushforward, under the

map P : S → ST (sending a path to its value at terminal time), of the metric
space (Sp, d). As a set, Lemma 4.6 implies that

Gp =
{
S (x)0,T : x ∈WGΩp (V )

}
.
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The metric space
(
Gp, dGp

)
as the isometric image of a R-tree is itself a R-tree.

The injective map P induces naturally a partial order, also denoted as �, and
an operation ∧ on Gp satisfying (4.9) with Sp replaced by Gp.
Lemma 4.8. (Continuity estimate for the right concatenation)Let S : [0, T ]→
G

(∗)
p.r.c. has �nite p-variation. Then

‖S‖pp−var −
∥∥S|[0,s]∥∥pp−var ≤ (1 + p) ‖S‖p−1p−var

∥∥S|[s,T ]

∥∥
p−var . (4.10)

Proof. Let P = (t0 < t1 < . . . < tn) be a partition of [0, T ]. Let j be the last
time in P such that tj ≤ s. Then

n−1∑
i=0

d
(
Sti , Sti+1

)p
≤

j−1∑
i=0

d
(
Sti , Sti+1

)p
+ d

(
Stj , Ss

)p
+ d

(
Ss, Stj+1

)p
+

n−1∑
i=j+1

d
(
Sti , Sti+1

)p
+
[
d
(
Stj , Stj+1

)p − d (Stj , Ss)p − d (Ss, Stj+1

)p]
. (4.11)

By the mean value theorem and triangle inequality,

d
(
Stj , Stj+1

)p − d (Stj , Ss)p ≤ p ‖S‖p−1p−var d
(
Ss, Stj+1

)
,

which, together with (4.11), implies (4.10).

Lemma 4.9. If S : [0, T ] → G
(∗)
p.r.c is continuous and has �nite p-variation,

then S· is continuous in
(
Gp, dGp

)
.

Proof. We �rst argue that for all s < t, there is a u ∈ [s, t] such that Su = Ss∧St.
By applying Lemma 3.2 to erase loops from S|[s,t], we obtain an injective path

S̃ with �nite p-variation connecting Ss and St. By the de�nition of Ss ∧ St,
there is an injective path Ŝ with �nite p-variation connecting Ss to Ss ∧ St and
then to St. By the uniqueness of reduced path (Lemma 4.6), Ŝ must coincide
with S̃, implying our claim. We now note that

dGp (Ss, St) ≤
∥∥∥P−1 (Su) ?

←−−−
S|[s,u]

∥∥∥p
p−var

−
∥∥P−1 (Su)

∥∥p
p−var

+
∥∥P−1 (Su) ? S[u,t]

∥∥p
p−var −

∥∥P−1 (Su)
∥∥p
p−var

which converges to 0 as t→ s by the continuity estimate for the right concate-
nation, Lemma 4.8.

Proof of the "Paths with trivial signature are tree-like" part of Theorem 2.1. Let
x ∈ WGΩp (V ) be such that S (x)0,T = 1. By the Extension Theorem (Propo-

sition 2.1), S (x)0,t ∈ G
(∗)
p.r.c. for all t. In the De�nition 1.1 of tree-like path,

take τ to be
(
Gp, dGp

)
(which is a R-tree as shown earlier in Proposition 4.1),

φ (t) = S (x)0,t and ψ (z) = πbpc (z). Then by the de�nition of signature,

xt = πbpc

(
S (x)0,t

)
. The continuity of φ has been shown in Lemma 4.9.
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