Al Daas, H., Rees, T. and Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091
(2021)
Two-level Nystrom-Schur preconditioner for sparse symmetric positive definite matrices.
SIAM Journal on Scientific Computing, 43 (6).
A3837-A3861.
ISSN 1095-7197
doi: 10.1137/21M139548X
Abstract/Summary
Randomized methods are becoming increasingly popular in numerical linear algebra. However, few attempts have been made to use them in developing preconditioners. Our interest lies in solving large-scale sparse symmetric positive definite linear systems of equations where the system matrix is preordered to doubly bordered block diagonal form (for example, using a nested dissection ordering). We investigate the use of randomized methods to construct high quality preconditioners. In particular, we propose a new and efficient approach that employs Nystrom's method for computing low rank approximations to develop robust algebraic two-level preconditioners. Construction of the new preconditioners involves iteratively solving a smaller but denser symmetric positive definite Schur complement system with multiple right-hand sides. Numerical experiments on problems coming from a range of application areas demonstrate that this inner system can be solved cheaply using block conjugate gradients and that using a large convergence tolerance to limit the cost does not adversely affect the quality of the resulting Nystrm-Schur two-level preconditioner.
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/99495 |
Item Type | Article |
Refereed | Yes |
Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
Publisher | Society for Industrial and Applied Mathematics |
Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record