Search from over 60,000 research works

Advanced Search

Air-Sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations

[thumbnail of Open Access]
Preview
382_2020_Article_5573.pdf - Published Version (5MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Bellucci, A. orcid id iconORCID: https://orcid.org/0000-0003-3766-1921, Athanasiadis, P. J., Scoccimarro, E., Ruggieri, P., Gualdi, S., Fedele, G., Haarsma, R. J., Garcia-Serrano, J., Castrillo, M., Putrahasan, D., Sanchez-Gomez, E., Moine, M.-P., Roberts, C. D., Roberts, M. J., Seddon, J. and Vidale, P. L. orcid id iconORCID: https://orcid.org/0000-0002-1800-8460 (2021) Air-Sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations. Climate Dynamics, 56 (7-8). pp. 2093-2111. ISSN 1432-0894 doi: 10.1007/s00382-020-05573-z

Abstract/Summary

Abstract: A dominant paradigm for mid-latitude air-sea interaction identifies the synoptic-scale atmospheric “noise” as the main driver for the observed ocean surface variability. While this conceptual model successfully holds over most of the mid-latitude ocean surface, its soundness over frontal zones (including western boundary currents; WBC) characterized by intense mesoscale activity, has been questioned in a number of studies suggesting a driving role for the small scale ocean dynamics (mesoscale oceanic eddies) in the modulation of air-sea interaction. In this context, climate models provide a powerful experimental device to inspect the emerging scale-dependent nature of mid-latitude air-sea interaction. This study assesses the impact of model resolution on the representation of air-sea interaction over the Gulf Stream region, in a multi-model ensemble of present-climate simulations performed using a common experimental design. Lead-lag correlation and covariance patterns between sea surface temperature (SST) and turbulent heat flux (THF) are diagnosed to identify the leading regimes of air-sea interaction in a region encompassing both the Gulf Stream system and the North Atlantic subtropical basin. Based on these statistical metrics it is found that coupled models based on “laminar” (eddy-parameterised) and eddy-permitting oceans are able to discriminate between an ocean-driven regime, dominating the region controlled by the Gulf Stream dynamics, and an atmosphere-driven regime, typical of the open ocean regions. However, the increase of model resolution leads to a better representation of SST and THF cross-covariance patterns and functional forms, and the major improvements can be largely ascribed to a refinement of the oceanic model component.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/97643
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Uncontrolled Keywords Article
Publisher Springer Berlin Heidelberg
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar