Beamish-Cook, J., Shankland, K. ORCID: https://orcid.org/0000-0001-6566-0155, Murray, C. A. and Vaqueiro, P.
ORCID: https://orcid.org/0000-0001-7545-6262
(2021)
Insights into the mechanochemical synthesis of MOF-74.
Crystal Growth & Design, 21 (5).
pp. 3047-3055.
ISSN 1528-7483
doi: 10.1021/acs.cgd.1c00213
Abstract/Summary
Mechanochemical synthesis has recently emerged as a scalable “green” approach for the preparation of MOFs, but current understanding of the underlying reaction mechanisms is limited. In this work, an investigation of the reaction pathway of the mechanochemical synthesis of MOF-74 from ZnO and 2,5-dihydroxyterephthalic acid (H4HDTA) using DMF as a liquid additive, is presented. The complex reaction pathway involves the formation of four short-lived intermediate phases, prior to the crystallisation of MOF-74. The crystal structures of three of these intermediates have been determined using a combination of single-crystal and powder X-ray diffraction methods and are described here. The initial stages of the reaction are very fast, with a DMF solvate of H4HDTA forming after only two minutes of milling. This is followed by the crystallisation, after only 4 minutes of milling, of a triclinic one-dimensional coordination polymer, Zn(H2DHTA)(DMF)2(H2O)2, which converts into a monoclinic polymorph on additional milling. Highly-crystalline MOF-74 appears after prolonged milling, for at least 70 minutes.
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/97555 |
Item Type | Article |
Refereed | Yes |
Divisions | Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Xray (CAF) |
Publisher | American Chemical Society |
Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record