Convection permitting regional climate change simulations for understanding future climate and informing decision making in Africa

[thumbnail of [15200477 - Bulletin of the American Meteorological Society] Convection permitting regional climate change simulations for understanding future climate and informing decision making in Africa.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Senior, C. A., Marsham, J. H., Berthou, S., Burgin, L. E., Folwell, S. S., Kendon, E. J., Klein, C. M., Jones, R. G., Mittal, N., Rowell, D. P., Tomassini, L., Vischel, T., Becker, B., Birch, C. E., Crook, J., Dougill, A. J., Finney, D. L., Graham, R. J., Hart, N. C. G., Jack, C. D., Jackson, L. S., James, R., Koelle, B., Misiani, H., Mwalukanga, B., Parker, D. J., Stratton, R. A., Taylor, C. M., Tucker, S. O., Wainwright, C. M. orcid id iconORCID: https://orcid.org/0000-0002-7311-7846, Washington, R. and Willet, M. R. (2021) Convection permitting regional climate change simulations for understanding future climate and informing decision making in Africa. Bulletin of the American Meteorological Society, 102 (6). E1206-E1223. ISSN 0003-0007 doi: 10.1175/bams-d-20-0020.1

Abstract/Summary

Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly effects of explicit convection affect not only projected changes in rainfall extremes, dry-spells and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change mean that we can provide regional decision makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the UK Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international co-ordination of such computationally, and human-resource expensive simulations as effectively as possible.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/96531
Identification Number/DOI 10.1175/bams-d-20-0020.1
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Meteorological Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar