Search from over 60,000 research works

Advanced Search

A frequent pattern conjunction Heuristic for rule generation in data streams

[thumbnail of Open Access]
Preview
information-12-00024-v2.pdf - Published Version (1MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Stahl, F. orcid id iconORCID: https://orcid.org/0000-0002-4860-0203, Le, T., Badii, A. and Gaber, M. M. (2021) A frequent pattern conjunction Heuristic for rule generation in data streams. Information, 12 (1). 24. ISSN 2078-2489 doi: 10.3390/info12010024

Abstract/Summary

This paper introduces a new and expressive algorithm for inducing descriptive rule-sets from streaming data in real-time in order to describe frequent patterns explicitly encoded in the stream. Data Stream Mining (DSM) is concerned with the automatic analysis of data streams in real-time. Rapid flows of data challenge the state-of-the art processing and communication infrastructure, hence the motivation for research and innovation into real-time algorithms that analyse data streams on-the-fly and can automatically adapt to concept drifts. To date, DSM techniques have largely focused on predictive data mining applications that aim to forecast the value of a particular target feature of unseen data instances, answering questions such as whether a credit card transaction is fraudulent or not. A real-time, expressive and descriptive Data Mining technique for streaming data has not been previously established as part of the DSM toolkit. This has motivated the work reported in this paper, which has resulted in developing and validating a Generalised Rule Induction (GRI) tool, thus producing expressive rules as explanations that can be easily understood by human analysts. The expressiveness of decision models in data streams serves the objectives of transparency, underpinning the vision of ‘explainable AI’ and yet is an area of research that has attracted less attention despite being of high practical importance. The algorithm introduced and described in this paper is termed Fast Generalised Rule Induction (FGRI). FGRI is able to induce descriptive rules incrementally for raw data from both categorical and numerical features. FGRI is able to adapt rule-sets to changes of the pattern encoded in the data stream (concept drift) on the fly as new data arrives and can thus be applied continuously in real-time. The paper also provides a theoretical, qualitative and empirical evaluation of FGRI.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/95630
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Publisher MDPI
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar