Search from over 60,000 research works

Advanced Search

The molecular structure of hexamethyldigermane determined by gas-phase electron diffraction with theoretical calculations for (CH3)3M-M(CH3)3 Where M = C, Si, and Ge

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Aarset, K., Page, E. M. and Rice, D. A. (2010) The molecular structure of hexamethyldigermane determined by gas-phase electron diffraction with theoretical calculations for (CH3)3M-M(CH3)3 Where M = C, Si, and Ge. Journal of Physical Chemistry A, 114 (26). pp. 7187-7190. ISSN 1089-5639 doi: 10.1021/jp1026042

Abstract/Summary

Gas-phase electron diffraction (GED) data together with results from ab initio molecular orbital calculations (HF and MP2/6-311+G(d,p)) have been used to determine the structure of hexamethyldigermane ((CH3)3Ge-Ge(CH3)3). The equilibrium symmetry is D3d, but the molecule has a very low-frequency, largeamplitude, torsional mode (φCGeGeC) that lowers the thermal average symmetry. The effect of this largeamplitude mode on the interatomic distances was described by a dynamic model which consisted of a set of pseudoconformers spaced at even intervals. The amount of each pseudoconformer was obtained from the ab initio calculations (HF/6-311+G(d,p)). The results for the principal distances (ra) and angles (∠h1) obtained from the combined GED/ab initio (with estimated 1σ uncertainties) are r(Ge-Ge) ) 2.417(2) Å, r(Ge-C) ) 1.956(1) Å, r(C-H) ) 1.097(5) Å, ∠GeGeC ) 110.5(2)°, and ∠GeCH ) 108.8(6)°. Theoretical calculations were performed for the related molecules ((CH3)3Si-Si(CH3)3 and (CH3)3C-C(CH3)3).

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/9538
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar