Eurasian cooling in response to Arctic sea-ice loss is not proved by maximum covariance analysis

[thumbnail of ZappCeppiShepherd_NCC_Accepted_with_SI.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Zappa, G., Ceppi, P. and Shepherd, T. G. orcid id iconORCID: https://orcid.org/0000-0002-6631-9968 (2021) Eurasian cooling in response to Arctic sea-ice loss is not proved by maximum covariance analysis. Nature Climate Change, 11. pp. 106-108. ISSN 1758-678X doi: 10.1038/s41558-020-00982-8

Abstract/Summary

The extent to which the ongoing decline in Arctic sea ice affects mid-latitude climate has received great attention and polarised opinions. The basic issue is whether the inter-annual variability in Arctic sea ice is the cause of, or the response to, variability in mid-latitude atmospheric circulation. Mori et al. (M19) claims to have reconciled previous conflicting studies by showing that a consistent mid-latitude climate response to inter-annual sea-ice anomalies can be identified between the ERA-Interim reanalysis, taken as observations, and an ensemble of atmosphere-only (AMIP) climate model simulations. Here we demonstrate that such a conclusion cannot be drawn, due to issues with the interpretation of the maximum covariance analysis performed. After applying the M19 approach to the output from a simple statistical model, we conclude that a predominant atmospheric forcing of the sea-ice variability, rather than the converse, is a more plausible explanation of the results presented in M19.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/95136
Identification Number/DOI 10.1038/s41558-020-00982-8
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Nature Publishing Group
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar