Biomass burning aerosols in most climate models are too absorbing

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of 262148_2_merged_1606886913.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Brown, H., Liu, X., Pokhrel, R., Murphy, S., Lu, Z., Saleh, R., Mielonen, T., Kokkola, H., Bergman, T., Myhre, G., Skeie, R. B., Watson-Paris, D., Stier, P., Johnson, B., Bellouin, N. orcid id iconORCID: https://orcid.org/0000-0003-2109-9559, Schulz, M., Vakkari, V., Beukes, J. P., van Zyl, P. G., Liu, S. and Chand, D. (2021) Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 12 (1). 277. ISSN 2041-1723 doi: 10.1038/s41467-020-20482-9

Abstract/Summary

Uncertainty in the representation of biomass burning (BB) aerosol composition and optical properties in climate models contributes to a range in modeled aerosol effects on incoming solar radiation. Depending on the model, the top-of-the-atmosphere BB aerosol effect can range from cooling to warming. By relating aerosol absorption relative to extinction and carbonaceous aerosol composition from observational datasets to nine state-of-the-art Earth System Models/Chemical Transport Models,we identify varying degrees of overestimation in BB aerosol absorptivity by these models. Modifications to BB aerosol refractive index, size, and mixing state improve the Community Atmosphere Model version 5 (CAM5) agreement with observations, leading to a global change in BB direct radiative effect of -0.07 W m-2,and regional changes of -2 W m-2(Africa) and -0.5 W m-2(South America/Temperate). Our findings suggest that current modeled BB contributes less to warming than previously thought, largely due to treatments of aerosol mixing state.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/94726
Identification Number/DOI 10.1038/s41467-020-20482-9
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Nature Publishing Group
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar