Atmospheric pressure ultraviolet laser desorption and ionization from liquid samples for native mass spectrometry

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of acs.analchem.9b03875.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hale, O. and Cramer, R. orcid id iconORCID: https://orcid.org/0000-0002-8037-2511 (2019) Atmospheric pressure ultraviolet laser desorption and ionization from liquid samples for native mass spectrometry. Analytical Chemistry, 91 (22). pp. 14192-14197. ISSN 0003-2700 doi: 10.1021/acs.analchem.9b03875

Abstract/Summary

Understanding protein structure is vital for evaluating protein interactions with drugs, proteins and other ligands. Native mass spectrometry (MS) is proving to be invaluable for this purpose, enabling analysis of ’native-like’ samples that mimic physiological conditions. Native MS is usually performed by electrospray ionization (ESI) with its soft ionization processes and the generation of multiply charged ions proving favourable for conformation retention and high mass analysis, respectively. There is scope to expand the currently available toolset, specifically to other soft ionization techniques such as soft laser desorption, for applications in areas like high-throughput screening and MS imaging. In this letter, observations made from native MS experiments using an ultraviolet (UV) laser-based ion source operating at atmospheric pressure are described. The ion source is capable of producing predominately multiply charged ions similar to ESI. Proteins and protein complexes were analyzed from a native-like sample droplet to investigate the technique. Ion mobility-mass spectrometry (IM-MS) measurements showed that folded protein conformations were detected for ions with low charge states. This observation indicates the source is suitable for native MS analysis and should be further developed for higher mass analysis in the future.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/87024
Identification Number/DOI 10.1021/acs.analchem.9b03875
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar