Fusion of enhanced and synthetic vision system images for runway and horizon detection

[thumbnail of Open access]
Preview
Text (Open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Fadhil, A. F., Kanneganti, R., Gupta, L., Eberle, H. and Vaidyanathan, R. (2019) Fusion of enhanced and synthetic vision system images for runway and horizon detection. Sensors, 19 (17). 3802. ISSN 1424-8220 doi: 10.3390/s19173802

Abstract/Summary

Networked operation of unmanned air vehicles (UAVs) demands fusion of information from disparate sources for accurate flight control. In this investigation, a novel sensor fusion architecture for detecting aircraft runway and horizons as well as enhancing the awareness of surrounding terrain is introduced based on fusion of enhanced vision system (EVS) and synthetic vision system (SVS) images. EVS and SVS image fusion has yet to be implemented in real-world situations due to signal misalignment. We address this through a registration step to align EVS and SVS images. Four fusion rules combining discrete wavelet transform (DWT) sub-bands are formulated, implemented, and evaluated. The resulting procedure is tested on real EVS-SVS image pairs and pairs containing simulated turbulence. Evaluations reveal that runways and horizons can be detected accurately even in poor visibility. Furthermore, it is demonstrated that different aspects of EVS and SVS images can be emphasized by using different DWT fusion rules. The procedure is autonomous throughout landing, irrespective of weather. The fusion architecture developed in this study holds promise for incorporation into manned heads-up displays (HUDs) and UAV remote displays to assist pilots landing aircraft in poor lighting and varying weather. The algorithm also provides a basis for rule selection in other signal fusion applications.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/86281
Identification Number/DOI 10.3390/s19173802
Refereed Yes
Divisions Life Sciences > School of Biological Sciences > Department of Bio-Engineering
Uncontrolled Keywords Hough transform, image fusion, image registration, intelligent transportation, runway detection, sensing, signal alignment, unmanned aircraft (UAV), wavelet transform
Publisher MDPI
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar