Search from over 60,000 research works

Advanced Search

Particle-in-cell experiments examine electron diffusion by whistler-mode waves: 1. Benchmarking with a cold plasma

[thumbnail of MERGED_PDF.pdf]
Preview
MERGED_PDF.pdf - Accepted Version (13MB) | Preview
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Allanson, O., Watt, C., Ratcliffe, H., Meredith, N., Allison, H., Bentley, S., Bloch, T. and Glauert, S. (2019) Particle-in-cell experiments examine electron diffusion by whistler-mode waves: 1. Benchmarking with a cold plasma. Journal of Geophysical Research - Space Physics, 124 (11). pp. 8893-8912. ISSN 0148-0227 doi: 10.1029/2019JA027088

Abstract/Summary

Using a particle-in-cell code, we study the diffusive response of electrons due to wave particle interactions with whistler-mode waves. The relatively simple configuration of field-aligned waves in a cold plasma is used in order to benchmark our novel method, and to compare with previous works that used a different modelling technique. In this boundary-value problem, incoherent whistler-mode waves are excited at the domain boundary, and then propagate through the ambient plasma. Electron diffusion characteristics are directly extracted from particle data across all available energy and pitch-angle space. The ‘nature’ of the diffusive response is itself a function of energy and pitch-angle, such that the rate of diffusion is not always constant in time. However, after an initial transient phase, the rate of diffusion tends to a constant, in a manner that is consistent with the assumptions of quasilinear diffusion theory. This work establishes a framework for future investigations on the nature of diffusion due to whistler-mode wave-particle interactions, using particle-in-cell numerical codes with driven waves as boundary value problems.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/86158
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar