Search from over 60,000 research works

Advanced Search

Nox2 contributes to age-related oxidative damage to neurons and the cerebral vasculature

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Fan, L. M., Geng, L., Cahill-Smith, S., Liu, F., Douglas, G., Mckenzie, C.-A., Smith, C., Brooks, G., Channon, K. M. and Li, J.-m. orcid id iconORCID: https://orcid.org/0000-0002-3294-3818 (2019) Nox2 contributes to age-related oxidative damage to neurons and the cerebral vasculature. The Journal of Clinical Investigation, 129 (8). pp. 3374-3386. ISSN 1558-8238 doi: 10.1172/JCI125173

Abstract/Summary

Oxidative stress plays an important role in aging-related neurodegeneration. This study used littermates of WT and Nox2-knockout (Nox2KO) mice plus endothelial cell-specific human Nox2 overexpression-transgenic (HuNox2Tg) mice to investigate Nox2-derived ROS in brain aging. Compared with young WT mice (3-4 months), aging WT mice (20-22 months) had obvious metabolic disorders and loss of locomotor activity. Aging WT brains had high levels of angiotensin II (Ang II) and ROS production; activation of ERK1/2, p53, and γH2AX; and losses of capillaries and neurons. However, these abnormalities were markedly reduced in aging Nox2KO brains. HuNox2Tg brains at middle age (11-12 months) already had high levels of ROS production and activation of stress signaling pathways similar to those found in aging WT brains. The mechanism of Ang II-induced endothelial Nox2 activation in capillary damage was examined using primary brain microvascular endothelial cells. The clinical significance of Nox2-derived ROS in aging-related loss of cerebral capillaries and neurons was investigated using postmortem midbrain tissues of young (25-38 years) and elderly (61-85 years) adults. In conclusion, Nox2 activation is an important mechanism in aging-related cerebral capillary rarefaction and reduced brain function, with the possibility of a key role for endothelial cells.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/85419
Item Type Article
Refereed Yes
Divisions Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Life Sciences > School of Biological Sciences > Biomedical Sciences
Uncontrolled Keywords Aging, Apoptosis, Neurodegeneration, Neuroscience, endothelial cells
Publisher American Society for Clinical Investigation
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar