The eigenvalues of tridiagonal sign matrices are dense in the spectra of periodic tridiagonal sign operators

[thumbnail of 1412.1724.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hagger, R. (2015) The eigenvalues of tridiagonal sign matrices are dense in the spectra of periodic tridiagonal sign operators. Journal of Functional Analysis, 269 (5). pp. 1563-1570. ISSN 0022-1236 doi: 10.1016/j.jfa.2015.01.019

Abstract/Summary

Chandler-Wilde, Chonchaiya and Lindner conjectured that the set of eigenvalues of finite tridiagonal sign matrices ($\pm 1$ on the first sub- and superdiagonal, $0$ everywhere else) is dense in the set of spectra of periodic tridiagonal sign operators on $\ell^2(\mathbb{Z})$. We give a simple proof of this conjecture. As a consequence we get that the set of eigenvalues of tridiagonal sign matrices is dense in the unit disk. In fact, a recent paper further improves this result, showing that this set of eigenvalues is dense in an even larger set.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/84019
Identification Number/DOI 10.1016/j.jfa.2015.01.019
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar