Subseasonal-to-seasonal predictability of the Southern Hemisphere eddy-driven jet during austral spring and early summer

[thumbnail of 2018JD030173R_Article_File.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview
[thumbnail of 2018JD030173R_Supplemental_Material.pdf]
Preview
Text - Supplemental Material
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Byrne, N. J., Shepherd, T. G. orcid id iconORCID: https://orcid.org/0000-0002-6631-9968 and Polichtchouk, I. (2019) Subseasonal-to-seasonal predictability of the Southern Hemisphere eddy-driven jet during austral spring and early summer. Journal of Geophysical Research: Atmospheres, 124 (13). pp. 6841-6855. ISSN 2169-8996 doi: 10.1029/2018JD030173

Abstract/Summary

Several recent studies have suggested that the stratosphere can be a source of subseasonal-to-seasonal predictability of Southern Hemisphere circulation during the austral spring and early summer seasons, through its influence on the eddy-driven jet. We exploit the large sample size afforded by the hindcasts from the European Centre for Medium-Range Weather Forecasts Integrated Forecast System to address a number of unanswered questions. It is shown that the picture of coherent seasonal variability of the coupled stratosphere-troposphere system apparent from the reanalysis record during the spring/early summer period is robust to sampling uncertainty, and that there is evidence of nonlinearity in the case of the most extreme variations. The effect of El Nino-Southern Oscillation on the eddy-driven jet during this time of year is found to occur via the stratosphere, with no evidence of a direct tropospheric pathway. A simple two-state statistical model of the stratospheric vortex is introduced to estimate the subseasonal-to-seasonal predictability associated with shifts of the seasonal cycle in the SH extratropical atmosphere. This simple model, along with a more general model, are subsequently used to interpret skill scores associated with hindcasts made using the full seasonal forecast model. Together the results provide evidence of tropospheric predictability on subseasonal-to-seasonal timescales from at least as early as August 1, and show no evidence of a `signal-to-noise paradox' between the full seasonal forecast model and the reanalysis.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/83703
Identification Number/DOI 10.1029/2018JD030173
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar