Search from over 60,000 research works

Advanced Search

Storylines: an alternative approach to representing uncertainty in physical aspects of climate change

[thumbnail of Open Access]
Preview
Available under license: Creative Commons Attribution
[thumbnail of Storylines_revisionV4.pdf]
Storylines_revisionV4.pdf - Accepted Version (579kB)
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Shepherd, T. G. orcid id iconORCID: https://orcid.org/0000-0002-6631-9968, Boyd, E., Calel, R. A., Chapman, S. C., Dessai, S., Dima-West, I. M., Fowler, H. J., James, R., Maraun, D., Martius, O., Senior, C. A., Sobel, A. H., Stainforth, D. A., Tett, S. F. B., Trenberth, K. E., van den Hurk, B. J. J. M., Watkins, N. W., Wilby, R. L. and Zenghelis, D. A. (2018) Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Climatic Change, 151 (3-4). pp. 555-571. ISSN 0165-0009 doi: 10.1007/s10584-018-2317-9

Abstract/Summary

As climate-change research becomes increasingly applied, the need for actionable information is growing rapidly. A key aspect of this requirement is the representation of uncertainties. The conventional approach to representing uncertainty in physical aspects of climate change is probabilistic, based on ensembles of climate model simulations. In the face of deep uncertainties, the known limitations of this approach are becoming increasingly apparent. An alternative is thus emerging which may be called a ‘storyline’ approach. We define a storyline as a physically self-consistent unfolding of past events, or of plausible future events or pathways. No a priori probability of the storyline is assessed; emphasis is placed instead on understanding the driving factors involved, and the plausibility of those factors. We introduce a typology of four reasons for using storylines to represent uncertainty in physical aspects of climate change: (i) improving risk awareness by framing risk in an event-oriented rather than a probabilistic manner, which corresponds more directly to how people perceive and respond to risk; (ii) strengthening decision-making by allowing one to work backward from a particular vulnerability or decision point, combining climate-change information with other relevant factors to address compound risk and develop appropriate stress tests; (iii) providing a physical basis for partitioning uncertainty, thereby allowing the use of more credible regional models in a conditioned manner; and (iv) exploring the boundaries of plausibility, thereby guarding against false precision and surprise. Storylines also offer a powerful way of linking physical with human aspects of climate change.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/80079
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Springer
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar