Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China

[thumbnail of Song et al. 2018_Quantification of DOC in lakes and reservoirs in China-J Environ Manage.pdf]
Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Song, K., Wen, Z., Shang, Y., Yang, H. orcid id iconORCID: https://orcid.org/0000-0001-9940-8273, Lyu, L., Liu, G., Fang, C., Du, J. and Zhao, Y. (2018) Quantification of dissolved organic carbon (DOC) storage in lakes and reservoirs of mainland China. Journal of Environmental Management, 217. pp. 391-402. ISSN 0301-4797 doi: 10.1016/j.jenvman.2018.03.121

Abstract/Summary

As a major fraction of carbon in inland waters, dissolved organic carbon (DOC) plays a crucial role in carbon cycling on a global scale. However, the quantity of DOC stored in lakes and reservoirs was not clear to date. In an attempt to examine the factors that determine the DOC storage in lakes and reservoirs across China, we assembled a large database (measured 367 lakes, and meta-analyzed 102 lakes from five limnetic regions; measured 144 reservoirs, and meta-analyzed 272 reservoirs from 31 provincial units) of DOC concentrations and water storages for lakes and reservoirs that are used to determine DOC storage in static inland waters. We found that DOC concentrations in saline waters (Mean/median ± S.D: 50.5/ 30.0 ± 55.97mg/L) are much higher than those in fresh waters (8.1/5.9 ± 6.8 mg/L), while lake DOC concentrations (25.9/11.5 ± 42.04 mg/L) are much higher than those in reservoirs (5.0/3.8 ± 4.5 mg/L). In terms of lake water volume and DOC storage, the Tibet-Qinghai lake region has the largest water volume (552.8 km3), 92% of which is saline waters, thus the largest DOC (13.39 Tg) is stored in these alpine lake region; followed by the Mengxin lake region, having a water volume of 99.4 km3 in which 1.75 Tg DOC was stored. Compared to Mengxin lake region, almost the same amount of water was stored in East China lake region (91.9 km3), however, much less DOC was stored in this region (0.43 Tg) due to the lower DOC concentration (Ave: 3.45 ± 2.68 mg/L). According to our investigation, Yungui and Northeast lake regions had water storages of 32.14 km3 and 19.44 km3 respectively, but relatively less DOC was stored in Yungui (0.13 Tg) than in Northeast lake region (0.19 Tg). Due to low DOC concentration in reservoirs, especially these large reservoirs having lower DOC concentration (V > 1.0 km3: 2.31 ± 1.48 mg/L), only 1.54 Tg was stored in a 485.1 km3 volume of water contained in reservoirs across the entire country.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/80032
Identification Number/DOI 10.1016/j.jenvman.2018.03.121
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Publisher Elsevier
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar