Full hydrodynamic reversibility of the weak dimerization of vancomycin and elucidation of its interaction with VanS monomers at clinical concentration

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution Non-commercial.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Phillips-Jones, M. K., Lithgo, R., Dinu, V., Gillis, R. B., Harding, J. E. orcid id iconORCID: https://orcid.org/0000-0002-5253-5862, Adams, G. G. and Harding, S. E. (2017) Full hydrodynamic reversibility of the weak dimerization of vancomycin and elucidation of its interaction with VanS monomers at clinical concentration. Scientific Reports, 7 (1). 12697. ISSN 2045-2322 doi: 10.1038/s41598-017-12620-z

Abstract/Summary

The reversibility and strength of the previously established dimerization of the important glycopeptide antibiotic vancomycin in four different aqueous solvents (including a medically-used formulation) have been studied using short-column sedimentation equilibrium in the analytical ultracentrifuge and model-independent SEDFIT-MSTAR analysis across a range of loading concentrations. The change in the weight average molar mass M w with loading concentration was consistent with a monomer-dimer equilibrium. Overlap of data sets of point weight average molar masses M w(r) versus local concentration c(r) for different loading concentrations demonstrated a completely reversible equilibrium process. At the clinical infusion concentration of 5 mg.mL(-1) all glycopeptide is dimerized whilst at 19 µg.mL(-1) (a clinical target trough serum concentration), vancomycin was mainly monomeric (<20% dimerized). Analysis of the variation of M w with loading concentration revealed dissociation constants in the range 25-75 μM, commensurate with a relatively weak association. The effect of two-fold vancomycin (19 µg.mL(-1)) appears to have no effect on the monomeric enterococcal VanS kinase involved in glycopeptide resistance regulation. Therefore, the 30% increase in sedimentation coefficient of VanS on adding vancomycin observed previously is more likely to be due to a ligand-induced conformational change of VanS to a more compact form rather than a ligand-induced dimerization.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/79594
Identification Number/DOI 10.1038/s41598-017-12620-z
Refereed Yes
Divisions Science > School of the Built Environment > Architecture
Science > School of the Built Environment > Urban Living group
Publisher Nature Publishing Group
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar