Search from over 60,000 research works

Advanced Search

Understanding the role of sea surface temperature-forcing for variability in global temperature and precipitation extremes

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Dittus, A. J. orcid id iconORCID: https://orcid.org/0000-0001-9598-6869, Karoly, D. J., Donat, M. G., Lewis, S. C. and Alexander, L. V. (2018) Understanding the role of sea surface temperature-forcing for variability in global temperature and precipitation extremes. Weather and Climate Extremes, 21. pp. 1-9. ISSN 2212-0947 doi: 10.1016/j.wace.2018.06.002

Abstract/Summary

The oceans are a well-known source of natural variability in the climate system, although their ability to account for inter-annual variations of temperature and precipitation extremes over land remains unclear. In this study, the role of sea-surface temperature (SST)-forcing is investigated for variability and trends in a range of commonly used temperature and precipitation extreme indices over the period 1959 to 2013. Using atmospheric simulations forced by observed SST and sea-ice concentrations (SIC) from three models participating in the Climate of the Twentieth Century Plus (C20C+) Project, results show that oceanic boundary conditions drive a substantial fraction of inter-annual variability in global average temperature extreme indices, as well as, to a lower extent, for precipitation extremes. The observed trends in temperature extremes are generally well captured by the SST-forced simulations although some regional features such as the lack of warming in daytime warm temperature extremes over South America are not reproduced in the model simulations. Furthermore, the models simulate too strong increases in warm day frequency compared to observations over North America. For extreme precipitation trends, the accuracy of the simulated trend pattern is regionally variable, and a thorough assessment is difficult due to the lack of locally significant trends in the observations. This study shows that prescribing SST and SIC holds potential predictability for extremes in some (mainly tropical) regions at the inter-annual time-scale.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/78154
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Uncontrolled Keywords temperature and precipitation extremes; variability; sea surface temperatures
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar