Search from over 60,000 research works

Advanced Search

Collisionless distribution functions for force-free current sheets: using a pressure transformation to lower the plasma beta

[thumbnail of final_version.pdf]
Preview
final_version.pdf - Accepted Version (3MB) | Preview
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Wilson, F., Neukirch, T. and Allanson, O. (2018) Collisionless distribution functions for force-free current sheets: using a pressure transformation to lower the plasma beta. Journal of Plasma Physics, 84 (3). ISSN 0022-3778 doi: 10.1017/S0022377818000570

Abstract/Summary

So far, only one distribution function giving rise to a collisionless nonlinear force-free current sheet equilibrium allowing for a plasma beta less than one is known (Allanson et al., Phys. Plasmas, vol. 22 (10), 2015, 102116; Allanson et al., J. Plasma Phys., vol. 82 (3), 2016a, 905820306). This distribution function can only be expressed as an infinite series of Hermite functions with very slow convergence and this makes its practical use cumbersome. It is the purpose of this paper to present a general method that allows us to find distribution functions consisting of a finite number of terms (therefore easier to use in practice), but which still allow for current sheet equilibria that can, in principle, have an arbitrarily low plasma beta. The method involves using known solutions and transforming them into new solutions using transformations based on taking integer powers (N) of one component of the pressure tensor. The plasma beta of the current sheet corresponding to the transformed distribution functions can then, in principle, have values as low as 1/N. We present the general form of the distribution functions for arbitrary N and then, as a specific example, discuss the case for N=2 in detail.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/77772
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Cambridge University Press
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar