On the inverse problem for Channell collisionless plasma equilibria

[thumbnail of revision.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Allanson, O., Troscheit, S. and Neukirch, T. (2018) On the inverse problem for Channell collisionless plasma equilibria. IMA Journal of Applied Mathematics, 83 (5). pp. 849-873. ISSN 0272-4960 doi: 10.1093/imamat/hxy026

Abstract/Summary

Vlasov–Maxwell equilibria are described by the self-consistent solutions of the time-independent Maxwell equations for the real-space dynamics of electromagnetic fields and the Vlasov equation for the phase-space dynamics of particle distribution functions (DFs) in a collisionless plasma. These two systems (macroscopic and microscopic) are coupled via the source terms in Maxwell’s equations, which are sums of velocity-space ‘moment’ integrals of the particle DF. This paper considers a particular subset of solutions of the broad plasma physics problem: ‘the inverse problem for collisionless equilibria’ (IPCE), viz. ‘given information regarding the macroscopic configuration of a collisionless plasma equilibrium, what self-consistent equilibrium DFs exist?’ We introduce the constants of motion approach to IPCE using the assumptions of a ‘modified Maxwellian’ DF, and a strictly neutral and spatially one-dimensional plasma, and this is consistent with ‘Channell’s method’ (Channell, 1976, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids, 19, 1541–1545). In such circumstances, IPCE formally reduces to the inversion of Weierstrass transformations (Bilodeau, 1962, The Weierstrass transform and Hermite polynomials. Duke Math. J., 29, 293–308). These are the same transformations that feature in the initial value problem for the heat/diffusion equation. We discuss the various mathematical conditions that a candidate solution of IPCE must satisfy. One method that can be used to invert the Weierstrass transform is expansions in Hermite polynomials. Building on the results of Allanson et al. (2016, From one-dimensional fields to Vlasov equilibria: Theory and application of Hermite polynomials. Journal of Plasma Physics, 82, 905820306, http://doi:10.1017/S0022377816000519), we establish under what circumstances a solution obtained by these means converges and allows velocity moments of all orders. Ever since the seminal work by Bernstein et al. (1957, Exact nonlinear plasma oscillations. Phys. Rev., 108, 546–550) on ‘stationary’ electrostatic plasma waves, the necessary quality of non-negativity has been noted as a feature that any candidate solution of IPCE will not a priori satisfy. We discuss this problem in the context of Channell equilibria, for magnetized plasmas.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/77602
Identification Number/DOI 10.1093/imamat/hxy026
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Oxford University Press
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar