Magnetic susceptibility, nanorheology, and magnetoviscosity of magnetic nanoparticles in viscoelastic environments

[thumbnail of ferroGLE.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Ilg, P. orcid id iconORCID: https://orcid.org/0000-0002-7518-5543 and Evangelopoulos, A. (2018) Magnetic susceptibility, nanorheology, and magnetoviscosity of magnetic nanoparticles in viscoelastic environments. Physical Review E, 97 (3). 032610. ISSN 1539-3755 doi: 10.1103/PhysRevE.97.032610

Abstract/Summary

While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian Dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity does not only slow down the magnetization relaxation, shift the peak of the imaginary magnetic susceptibility $\chi''$ to lower frequencies and increase the magnetoviscosity, it also leads to non-exponential relaxation and a broadening of $\chi''$. The model we study also allows to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/76122
Identification Number/DOI 10.1103/PhysRevE.97.032610
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher American Physical Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar