Second order L∞ variational problems and the ∞-polylapacian

[thumbnail of 2ndOLIVP&IPL-4_11_2016.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Katzourakis, N. and Pryer, T. (2020) Second order L∞ variational problems and the ∞-polylapacian. Advances in Calculus of Variations, 13 (2). pp. 115-140. ISSN 1864-8266 doi: 10.1515/acv-2016-0052

Abstract/Summary

In this paper we initiate the study of $2$nd order variational problems in $L^\infty$, seeking to minimise the $L^\infty$ norm of a function of the hessian. We also derive and study the respective PDE arising as the analogue of the Euler-Lagrange equation. Given $\mathrm{H}\in C^1(\mathbb{R}^{n\times n}_s)$, for the functional \[ \label{1} \ \ \ \ \mathrm{E}_\infty(u,\mathcal{O})\, =\, \big\| \mathrm{H}\big(\mathrm{D}^2 u\big) \big\|_{L^\infty(\mathcal{O})}, \ \ \ u\in W^{2,\infty}(\Omega),\ \mathcal{O}\subseteq \Omega, \tag{1} \] the associated equation is the fully nonlinear $3$rd order PDE \[ \label{2} \A^2_\infty u\, :=\,\big(\mathrm{H}_X\big(\mathrm{D}^2u\big)\big)^{\otimes 3}:\big(\mathrm{D}^3u\big)^{\otimes 2}\, =\,0. \tag{2} \] Special cases arise when $\mathrm{H}$ is the Euclidean length of either the full hessian or of the Laplacian, leading to the $\infty$-Polylaplacian and the $\infty$-Bilaplacian respectively. We establish several results for \eqref{1} and \eqref{2}, including existence of minimisers, of absolute minimisers and of ``critical point" generalised solutions, proving also variational characterisations and uniqueness. We also construct explicit generalised solutions and perform numerical experiments.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/74829
Identification Number/DOI 10.1515/acv-2016-0052
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher De Gruyter
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar