Search from over 60,000 research works

Advanced Search

From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials

[thumbnail of Open access]
Preview
Allanson-2016JPP.pdf - Published Version (4MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Allanson, O., Neukirch, T., Troscheit, S. and Wilson, F. (2016) From one-dimensional fields to Vlasov equilibria: theory and application of Hermite polynomials. Journal of Plasma Physics, 82 (3). 905820306. ISSN 0022-3778 doi: 10.1017/S0022377816000519

Abstract/Summary

We consider the theory and application of a solution method for the inverse problem in collisionless equilibria, namely that of calculating a Vlasov–Maxwell equilibrium for a given macroscopic (fluid) equilibrium. Using Jeans’ theorem, the equilibrium distribution functions are expressed as functions of the constants of motion, in the form of a Maxwellian multiplied by an unknown function of the canonical momenta. In this case it is possible to reduce the inverse problem to inverting Weierstrass transforms, which we achieve by using expansions over Hermite polynomials. A sufficient condition on the pressure tensor is found which guarantees the convergence and the boundedness of the candidate solution, when satisfied. This condition is obtained by elementary means, and it is clear how to put it into practice. We also argue that for a given pressure tensor for which our method applies, there always exists a positive distribution function solution for a sufficiently magnetised plasma. Illustrative examples of the use of this method with both force-free and non-force-free macroscopic equilibria are presented, including the full verification of a recently derived distribution function for the force-free Harris sheet (Allanson et al., Phys. Plasmas, vol. 22 (10), 2015, 102116). In the effort to model equilibria with lower values of the plasma beta, solutions for the same macroscopic equilibrium in a new gauge are calculated, with numerical results presented for beta=0.05.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/71990
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Cambridge University Press
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar