Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM

[thumbnail of FAMOUS_new_2016d.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Jackson, L. C., Smith, R. S. orcid id iconORCID: https://orcid.org/0000-0001-7479-7778 and Wood, R. A. (2017) Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM. Climate Dynamics, 49 (1-2). pp. 173-191. ISSN 0930-7575 doi: 10.1007/s00382-016-3336-8

Abstract/Summary

Theories suggest that the Atlantic Meridional Overturning Circulation (AMOC) can exhibit a hysteresis where, for a given input of fresh water into the north Atlantic, there are two possible states: one with a strong overturning in the north Atlantic (on) and the other with a reverse Atlantic cell (off). A previous study showed hysteresis of the AMOC for the first time in a coupled general circulation model (Hawkins et al. in Geophys Res Lett. doi: 10.1029/2011GL047208, 2011). In this study we show that the hysteresis found by Hawkins et al. (2011) is sensitive to the method with which the fresh water input is compensated. If this compensation is applied throughout the volume of the global ocean, rather than at the surface, the region of hysteresis is narrower and the off states are very different: when the compensation is applied at the surface, a strong Pacific overturning cell and a strong Atlantic reverse cell develops; when the compensation is applied throughout the volume there is little change in the Pacific and only a weak Atlantic reverse cell develops. We investigate the mechanisms behind the transitions between the on and off states in the two experiments, and find that the difference in hysteresis is due to the different off states. We find that the development of the Pacific overturning cell results in greater atmospheric moisture transport into the North Atlantic, and also is likely responsible for a stronger Atlantic reverse cell. These both act to stabilize the off state of the Atlantic overturning.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/71595
Identification Number/DOI 10.1007/s00382-016-3336-8
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Springer
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar