Search from over 60,000 research works

Advanced Search

In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children

[thumbnail of Open Access]
Preview
fiw233.pdf - Published Version (2MB) | Preview
Available under license: Creative Commons Attribution
[thumbnail of Manuscript%2520revised%2520RGrimaldi_ID%2520FEMSEC-16-06-0358.pdf]
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Grimaldi, R., Cela, D., Swann, J. R., Vulevic, J., Gibson, G. R. orcid id iconORCID: https://orcid.org/0000-0002-0566-0476, Tzortzis, G. and Costabile, A. (2017) In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children. FEMS Microbiology Ecology, 93 (2). fiw233. ISSN 1574-6941 doi: 10.1093/femsec/fiw233

Abstract/Summary

Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of ASD children contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared to non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, F. prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short chain fatty acid (SCFA) production in both groups, and increased ethanol and lactate in autistic children.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/68883
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
Publisher Wiley
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar