Search from over 60,000 research works

Advanced Search

The PMIP4 contribution to CMIP6 – Part 2: two interglacials, scientific objective and experimental design for Holocene and last interglacial simulations

[thumbnail of Open Access ( Final Version )]
Preview
gmd-10-3979-2017.pdf - Published Version (5MB) | Preview
Available under license: Creative Commons Attribution
[thumbnail of Open Access ( Review Version )]
Preview
gmd-2016-279.pdf - Published Version (3MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Otto-Bleisner, B. L., Braconnot, P., Harrison, S. P. orcid id iconORCID: https://orcid.org/0000-0001-5687-1903, Lunt, D. J., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Capron, E., Carlson, A. E., Dutton, A., Fischer, H., Goelzer, H., Govin, A., Haywood, A., Joos, F., Legrande, A. N., Lipscomb, W. H., Lohmann, G., Mahowald, N., Nehrbass-Ahles, C., Pausata, F. S.-R., Peterschmidt, J.-Y., Phipps, S. and Renssen, H. (2017) The PMIP4 contribution to CMIP6 – Part 2: two interglacials, scientific objective and experimental design for Holocene and last interglacial simulations. Geoscientific Model Development, 10 (11). pp. 3979-4003. ISSN 1991-9603 doi: 10.5194/gmd-10-3979-2017

This is the latest version of this item.

Abstract/Summary

Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for Tier 1 simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127,000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional CMIP6 Tier 2 and Tier 3 sensitivity experiments of PMIP4, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.

Altmetric Badge

Additional Information This paper was formally withdrawn from Climate of the Past Discussions and resubmitted to Geoscientific Model Development Discussions
Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/68688
Item Type Article
Refereed No
Divisions Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Interdisciplinary centres and themes > Centre for Past Climate Change
Additional Information This paper was formally withdrawn from Climate of the Past Discussions and resubmitted to Geoscientific Model Development Discussions
Publisher European Geosciences Union
Download/View statistics View download statistics for this item

Available Versions of this Item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar