Sobolev spaces on non-Lipschitz subsets of Rn with application to boundary integral equations on fractal screens

[thumbnail of ChandlerWilde_Hewett_Moiola_IEOT_2017.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Chandler-Wilde, S. N. orcid id iconORCID: https://orcid.org/0000-0003-0578-1283, Hewett, D. P. and Moiola, A. (2017) Sobolev spaces on non-Lipschitz subsets of Rn with application to boundary integral equations on fractal screens. Integral Equations and Operator Theory, 87 (2). pp. 179-224. ISSN 1420-8989 doi: 10.1007/s00020-017-2342-5

Abstract/Summary

We study properties of the classical fractional Sobolev spaces on non-Lipschitz subsets of Rn. We investigate the extent to which the properties of these spaces, and the relations between them, that hold in the well-studied case of a Lipschitz open set, generalise to non-Lipschitz cases. Our motivation is to develop the functional analytic framework in which to formulate and analyse integral equations on non-Lipschitz sets. In particular we consider an application to boundary integral equations for wave scattering by planar screens that are non-Lipschitz, including cases where the screen is fractal or has fractal boundary.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/68651
Identification Number/DOI 10.1007/s00020-017-2342-5
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Springer
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar