Ethylene-mediated plant responses to severe water deficit in strawberry

[thumbnail of 21027114_Garcia_thesis.pdf]
Preview
Text - Thesis
· Please see our End User Agreement before downloading.
| Preview
[thumbnail of 21027114_Garcia_form.pdf]
Text - Thesis Deposit Form
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Llorente Garcia, A. (2016) Ethylene-mediated plant responses to severe water deficit in strawberry. PhD thesis, University of Reading.

Abstract/Summary

The research described in this thesis focussed on the potential effect of ethylene produced under severe water deficit conditions (SWD) on the concentration of phenolic compounds in fruit and leaves of commercial strawberry (Fragaria x ananassa Duch.). An increased ethylene production rate was detected in green fruit and leaves at midday of the second day of wilting in response to SWD. The stress-induced rise in ethylene production was successfully inhibited by applications of aminoethoxyvinylglycine (AVG) and subsequently re-instated by 1-aminocyclopropane- 1-carboxylic acid (ACC) or replaced by abscisic acid (ABA) in fruits. Initially, fruit total ellagic acid concentration increased along with ethylene production but conclusive evidence for the causal role of ethylene in the accumulation of individual phenolics in fruit from the inhibition, re-instatement and replacement of the ethylene signal was not obtained. The quantitative expression of selected genes in leaves was investigated, and a significant reduction in the relative expression of FaACS1 (coding for ACC synthase), an increase in FaACO1, FaACO4 (coding for ACC oxidase) expression and no change on the expression FaPAL (coding for Phenylalanine ammonia lyase) was observed. Increased leaf ethylene production rate was likely due to increased expression of genes regulating ACC oxidase activity. However, no evidence was found from these genetic studies to confirm the role of stress-induced ethylene production in accumulation of phenolics in fruit or leaves.

Item Type Thesis (PhD)
URI https://reading-clone.eprints-hosting.org/id/eprint/67762
Divisions Life Sciences > School of Agriculture, Policy and Development
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar