Boedihardjo, H. (2018) Decay rate of iterated integrals of branched rough path. Annales de l'Institut Henri Poincare (C) Analyse Non Linéaire, 35 (4). pp. 945-969. ISSN 0294-1449 doi: 10.1016/j.anihpc.2017.09.002
Abstract/Summary
Iterated integrals of paths arise frequently in the study of the Taylor's expansion for controlled differential equations. We will prove a factorial decay estimate, conjectured by M. Gubinelli, for the iterated integrals of non-geometric rough paths. We will explain, with a counter example, why the conventional approach of using the neoclassical inequality fails. Our proof involves a concavity estimate for sums over rooted trees and a non-trivial extension of T. Lyons' proof in 1994 for the factorial decay of iterated Young's integrals.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/67377 |
| Identification Number/DOI | 10.1016/j.anihpc.2017.09.002 |
| Refereed | Yes |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
| Publisher | Elsevier |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download