Time-resolved gas-phase kinetic, quantum chemical and RRKM studies of the reaction of silylene with 2,5-dihydrofuran

[thumbnail of Becerraetal_2015_paper-JPCA-rvsd-submitted version.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview
[thumbnail of Figures 4 & 5]
Preview
Text (Figures 4 & 5) - Accepted Version
· Please see our End User Agreement before downloading.
| Preview
[thumbnail of Figure 6]
Preview
Text (Figure 6) - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Becerra, R., Cannady, J. P., Pfrang, C. and Walsh, R. (2015) Time-resolved gas-phase kinetic, quantum chemical and RRKM studies of the reaction of silylene with 2,5-dihydrofuran. Journal of Physical Chemistry A, 119 (46). pp. 11241-11253. ISSN 1089-5639 doi: 10.1021/acs.jpca.5b07404

Abstract/Summary

Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reaction with 2,5-dihydrofuran (2,5-DHF). The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 296-598 K. The reaction showed pressure dependences characteristic of a third body assisted association. The second order rate coefficients obtained by RRKM-assisted extrapolation to the high pressure limits at each temperature, fitted the following Arrhenius equation where the error limits are single standard deviations: log(k/cm3 molecule-1 s-1) = (-9.96 ± 0.08) + (3.38 ± 0.62 kJ mol-1)/ RT ln10 End product analysis revealed no GC-identifiable product. Quantum chemical (ab initio) calculations indicate that reaction of SiH2 with 2,5-DHF can occur at both the double bond (to form a silirane) and the O-atom (to form a donor acceptor, zwitterionic complex) via barrierless processes. Further possible reaction steps have been explored, of which the only viable one appears to be decomposition of the O-complex to give 1,3-butadiene + silanone, although isomerisation of the silirane cannot be completely ruled out. The potential energy surface for SiH2 + 2,5-DHF is consistent with that of SiH2 with Me2O, and with that of SiH2 with cis-but-2-ene, the simplest reference reactions. RRKM calculations incorporating reaction at both π- and O-atom sites, can be made to fit the experimental rate coefficient pressure dependence curves at 296-476 K, giving values for k∞(π) and k∞(O) which indicate the latter is larger in magnitude at all temperatures, in contrast to values from individual model reactions. This unexpected result suggests that, in 2,5-DHF with its two different reaction sites, the O-atom exerts the more pronounced electrophilic attraction on the approaching silylene. Arrhenius parameters for the individual pathways have been obtained. The lack of a fit at 598K is consistent with decomposition of the O-complex to give 1,3-butadiene + silanone.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/67271
Identification Number/DOI 10.1021/acs.jpca.5b07404
Refereed Yes
Divisions Interdisciplinary Research Centres (IDRCs) > Walker Institute
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Optical Spectroscopy (CAF)
Publisher ACS Publications
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar