Methods to estimate acclimatization to urban heat island effects on heat- and cold-related mortality

[thumbnail of Open access]
Preview
Text (Open access) - Published Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Milojevic, A., Armstrong, B. G., Gasparrini, A., Bohnenstengel, S. I., Barratt, B. and Wilkinson, P. (2016) Methods to estimate acclimatization to urban heat island effects on heat- and cold-related mortality. Environmental Health Perspectives, 124 (7). pp. 1016-1022. ISSN 0091-6765 doi: 10.1289/ehp.1510109

Abstract/Summary

Background: Investigators have examined whether heat mortality risk is increased in neighborhoods subject to the urban heat island (UHI) effect but have not identified degrees of difference in susceptibility to heat and cold between cool and hot areas, which we call acclimatization to the UHI. Objectives: We developed methods to examine and quantify the degree of acclimatization to heat- and cold-related mortality in relation to UHI anomalies and applied these methods to London, UK. Methods: Case–crossover analyses were undertaken on 1993–2006 mortality data from London UHI decile groups defined by anomalies from the London average of modeled air temperature at a 1-km grid resolution. We estimated how UHI anomalies modified excess mortality on cold and hot days for London overall and displaced a fixed-shape temperature-mortality function (“shifted spline” model). We also compared the observed associations with those expected under no or full acclimatization to the UHI. Results: The relative risk of death on hot versus normal days differed very little across UHI decile groups. A 1°C UHI anomaly multiplied the risk of heat death by 1.004 (95% CI: 0.950, 1.061) (interaction rate ratio) compared with the expected value of 1.070 (1.057, 1.082) if there were no acclimatization. The corresponding UHI interaction for cold was 1.020 (0.979, 1.063) versus 1.030 (1.026, 1.034) (actual versus expected under no acclimatization, respectively). Fitted splines for heat shifted little across UHI decile groups, again suggesting acclimatization. For cold, the splines shifted somewhat in the direction of no acclimatization, but did not exclude acclimatization. Conclusions: We have proposed two analytical methods for estimating the degree of acclimatization to the heat- and cold-related mortality burdens associated with UHIs. The results for London suggest relatively complete acclimatization to the UHI effect on summer heat–related mortality, but less clear evidence for cold–related mortality.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/67071
Identification Number/DOI 10.1289/ehp.1510109
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher National Institute of Environmental Health Sciences
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar