Sparse density estimator with tunable kernels

[thumbnail of 1-s2.0-S092523121501173X-main.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hong, X. orcid id iconORCID: https://orcid.org/0000-0002-6832-2298, Chen, S. and Becerra, V. (2016) Sparse density estimator with tunable kernels. Neurocomputing, 173 (3). pp. 1976-1982. ISSN 0925-2312 doi: 10.1016/j.neucom.2015.08.021

Abstract/Summary

A new sparse kernel density estimator with tunable kernels is introduced within a forward constrained regression framework whereby the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive algorithm is developed to select significant kernels one at time, and the kernel width of the selected kernel is then tuned using the gradient descent algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing very sparse kernel density estimators with competitive accuracy to existing kernel density estimators.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/65632
Identification Number/DOI 10.1016/j.neucom.2015.08.021
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar