Search from over 60,000 research works

Advanced Search

A fast adaptive tunable RBF network for nonstationary systems

[thumbnail of 07310878(1).pdf]
07310878(1).pdf - Accepted Version (1MB)
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Chen, H., Gong, Y., Hong, X. orcid id iconORCID: https://orcid.org/0000-0002-6832-2298 and Chen, S. (2016) A fast adaptive tunable RBF network for nonstationary systems. IEEE Transactions on Cybernetics, 46 (12). pp. 2683-2692. ISSN 2168-2267 doi: 10.1109/TCYB.2015.2484378

Abstract/Summary

This paper describes a novel on-line learning approach for radial basis function (RBF) neural network. Based on an RBF network with individually tunable nodes and a fixed small model size, the weight vector is adjusted using the multi-innovation recursive least square algorithm on-line. When the residual error of the RBF network becomes large despite of the weight adaptation, an insignificant node with little contribution to the overall system is replaced by a new node. Structural parameters of the new node are optimized by proposed fast algorithms in order to significantly improve the modeling performance. The proposed scheme describes a novel, flexible, and fast way for on-line system identification problems. Simulation results show that the proposed approach can significantly outperform existing ones for nonstationary systems in particular.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/65631
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Publisher IEEE
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar