An optimization problem concerning multiplicative functions

[thumbnail of optimizationproblem.pdf]
Preview
Text - Accepted Version
· Available under License Creative Commons Attribution Non-commercial No Derivatives.
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hilberdink, T. (2015) An optimization problem concerning multiplicative functions. Linear Algebra and its Applications, 485. pp. 289-304. ISSN 0024-3795 doi: 10.1016/j.laa.2015.07.005

Abstract/Summary

In this paper we study the problem of maximizing a quadratic form 〈Ax,x〉 subject to ‖x‖q=1, where A has matrix entries View the MathML source with i,j|k and q≥1. We investigate when the optimum is achieved at a ‘multiplicative’ point; i.e. where x1xmn=xmxn. This turns out to depend on both f and q, with a marked difference appearing as q varies between 1 and 2. We prove some partial results and conjecture that for f multiplicative such that 0<f(p)<1, the solution is at a multiplicative point for all q≥1.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/50983
Identification Number/DOI 10.1016/j.laa.2015.07.005
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar