Porter, R. and Porter, D. (2006) Approximations to the scattering of water waves by steep topography. Journal Of Fluid Mechanics, 562. pp. 279-302. ISSN 0022-1120
Abstract/Summary
A new method is developed for approximating the scattering of linear surface gravity waves on water of varying quiescent depth in two dimensions. A conformal mapping of the fluid domain onto a uniform rectangular strip transforms steep and discontinuous bed profiles into relatively slowly varying, smooth functions in the transformed free-surface condition. By analogy with the mild-slope approach used extensively in unmapped domains, an approximate solution of the transformed problem is sought in the form of a modulated propagating wave which is determined by solving a second-order ordinary differential equation. This can be achieved numerically, but an analytic solution in the form of a rapidly convergent infinite series is also derived and provides simple explicit formulae for the scattered wave amplitudes. Small-amplitude and slow variations in the bedform that are excluded from the mapping procedure are incorporated in the approximation by a straightforward extension of the theory. The error incurred in using the method is established by means of a rigorous numerical investigation and it is found that remarkably accurate estimates of the scattered wave amplitudes are given for a wide range of bedforms and frequencies.
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/4977 |
Item Type | Article |
Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
Uncontrolled Keywords | MILD-SLOPE EQUATION SURFACE-WAVES |
Download/View statistics | View download statistics for this item |
University Staff: Request a correction | Centaur Editors: Update this record