Uniqueness of signature for simple curves

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Boedihardjo, H., Ni, H. and Qian, Z. (2014) Uniqueness of signature for simple curves. Journal of Functional Analysis, 267 (6). pp. 1778-1806. ISSN 0022-1236 doi: 10.1016/j.jfa.2014.06.006

Abstract/Summary

We propose a topological approach to the problem of determining a curve from its iterated integrals. In particular, we prove that a family of terms in the signature series of a two dimensional closed curve with finite p-variation, 1≤p<2, are in fact moments of its winding number. This relation allows us to prove that the signature series of a class of simple non-smooth curves uniquely determine the curves. This implies that outside a Chordal SLEκ null set, where 0<κ≤4, the signature series of curves uniquely determine the curves. Our calculations also enable us to express the Fourier transform of the n-point functions of SLE curves in terms of the expected signature of SLE curves. Although the techniques used in this article are deterministic, the results provide a platform for studying SLE curves through the signatures of their sample paths.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/42381
Identification Number/DOI 10.1016/j.jfa.2014.06.006
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher Elsevier
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar