Decomposition in soil and chemical characteristics of pollen

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Webster, E. A., Tilston, E. L., Chudek, J. A. and Hopkins, D. W. (2008) Decomposition in soil and chemical characteristics of pollen. European Journal of Soil Science, 59 (3). pp. 551-558. ISSN 1351-0754 doi: 10.1111/j.1365-2389.2008.01022.x

Abstract/Summary

The input to soils made by pollen and its subsequent mineralization has rarely been investigated from a soil microbiological point of view even though the small but significant quantities of C and N in pollen may make an important contribution to nutrient cycling. The relative resistance to decomposition of pollen exines (outer layers) has led to much of the focus of pollen in soil being on its preservation for archaeological and palaeo-ecological purposes. We have examined aspects of the chemical composition and decomposition of pollen from birch (Betula alba) and maize (Zea mays) in soil. The relatively large N contents, small C-to-N ratios and large water-soluble contents of pollen from both species indicated that they would be readily mineralized in soil. When added to soil and incubated at 16 degrees C an amount of C equivalent to 22-26% of the added pollen C was lost as CO2 within 22 days, with the Z. mays pollen decomposing faster. For B. alba pollen, the water-soluble fraction decomposed faster than the whole pollen and the insoluble fraction decomposed more slowly over 22 days. By contrast, there were no significant differences in the decomposition rates of the different fractions from Z. mays pollen. Solid-state C-13 nuclear magnetic resonance (NMR) revealed no gross chemical differences between the pollen of these two species, with strong resonances in the alkyl- and methyl-C region (0-45 p.p.m.) indicative of aliphatic compounds, the O-alkyl-C (60-90 p.p.m.) and the acetal- and ketal-C region (90-110 p.p.m.) indicative of polysaccharides, and the carbonyl-C region indicative of peptides and carboxylic acids. In addition, both pollens gave a small but distinct resonance at 55 p.p.m. attributed to N-alkyl-C. The resonances attributed to polysaccharides were lost completely or substantially reduced after decomposition.

Altmetric Badge

Additional Information
Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/4214
Identification Number/DOI 10.1111/j.1365-2389.2008.01022.x
Divisions Science > School of Archaeology, Geography and Environmental Science
Interdisciplinary centres and themes > Soil Research Centre
Uncontrolled Keywords NUCLEAR-MAGNETIC-RESONANCE GENETIC MODIFICATIONS PLANTS C-13 SPOROPOLLENINS MICROORGANISMS SPECTROSCOPY TOBACCO FOSSIL NMR
Additional Information
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar