Lakkis, O., Makridakis, C. and Pryer, T. (2015) A comparison of duality and energy a posteriori estimates for $\mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ in parabolic problems. Mathematics of Computation, 84 (294). pp. 1537-1569. ISSN 0025-5718 doi: 10.1090/S0025-5718-2014-02912-8
Abstract/Summary
We use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson in 1991 by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estimators. For comparison with previous results we derive also an energy-based a posteriori estimate for the $ \mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$-error which simplifies a previous one given by Lakkis and Makridakis in 2006. We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/40921 |
| Identification Number/DOI | 10.1090/S0025-5718-2014-02912-8 |
| Refereed | Yes |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
| Publisher | American Mathematical Society |
| Download/View statistics | View download statistics for this item |
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download