Search from over 60,000 research works

Advanced Search

Hydrophilic sulfonated bis-1,2,4-triazine ligands are highly effective reagents for separating actinides(iii) from lanthanides(iii) via selective formation of aqueous actinide complexes

[thumbnail of Open Access]
Preview
c5sc01328c.pdf - Published Version (902kB) | Preview
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Lewis, F. W., Harwood, L. M. orcid id iconORCID: https://orcid.org/0000-0002-8442-7380, Hudson, M. J., Geist, A., Kozhevnikov, V. N., Distler, P. and John, J. (2015) Hydrophilic sulfonated bis-1,2,4-triazine ligands are highly effective reagents for separating actinides(iii) from lanthanides(iii) via selective formation of aqueous actinide complexes. Chemical Science, 6 (8). pp. 4812-4821. ISSN 1478-6524 doi: 10.1039/C5SC01328C

Abstract/Summary

We report the first examples of hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands, and their applications as actinide(III) selective aqueous complexing agents. The combination of a hydrophobic diamide ligand in the organic phase and a hydrophilic tetrasulfonated bis-triazine ligand in the aqueous phase is able to separate Am(III) from Eu(III) by selective Am(III) complex formation across a range of nitric acid concentrations with very high selectivities, and without the use of buffers. In contrast, disulfonated bis-triazine ligands are unable to separate Am(III) from Eu(III) in this system. The greater ability of the tetrasulfonated ligands to retain Am(III) selectively in the aqueous phase than the corresponding disulfonated ligands appears to be due to the higher aqueous solubilities of the complexes of the tetrasulfonated ligands with Am(III). The selectivities for Am(III) complexation observed with hydrophilic tetrasulfonated bis-triazine ligands are in many cases far higher than those found with the polyaminocarboxylate ligands previously used as actinide-selective complexing agents, and are comparable to those found with the parent hydrophobic bis-triazine ligands. Thus we demonstrate a feasible alternative method to separate actinides from lanthanides than the widely studied approach of selective actinide extraction with hydrophobic bis-1,2,4-triazine ligands such as CyMe4-BTBP and CyMe4-BTPhen.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/40892
Item Type Article
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher Royal Society of Chemistry
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar