Climatic impacts of land-use change due to crop yield increases and a universal carbon tax from a scenario model*

[thumbnail of jcli-d-13-00154%2E1.pdf]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Davies-Barnard, T., Valdes, P. J., Singarayer, J. and Jones, C. D. (2014) Climatic impacts of land-use change due to crop yield increases and a universal carbon tax from a scenario model*. Journal of Climate, 27 (4). pp. 1413-1424. ISSN 1520-0442 doi: 10.1175/JCLI-D-13-00154.1

Abstract/Summary

Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/39672
Identification Number/DOI 10.1175/JCLI-D-13-00154.1
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Meteorological Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar