Effects of allometry, productivity and lifestyle on rates and limits of body size evolution

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Okie, J. G., Boyer, A. G., Brown, J. H., Costa, D. P., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., Saarinen, J. J., Smith, F. A., Stephens, P. R., Theodor, J., Uhen, M. D. and Sibly, R. M. (2013) Effects of allometry, productivity and lifestyle on rates and limits of body size evolution. Proceedings of the Royal Society B: Biological Sciences, 280 (1764). 20131007. ISSN 0962-8452 doi: 10.1098/rspb.2013.1007

Abstract/Summary

Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade's evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/37858
Identification Number/DOI 10.1098/rspb.2013.1007
Refereed Yes
Divisions Life Sciences > School of Biological Sciences > Ecology and Evolutionary Biology
Uncontrolled Keywords slow–fast life-history continuum evolutionary rate metabolic theory of ecology maximum body size macroecology mammal macroevolution
Publisher Royal Society Publishing
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar