Thiocyanate complexes of uranium in multiple oxidation states: a combined structural, magnetic, spectroscopic, spectroelectrochemical, and theoretical study

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hashem, E., Platts, J. A., Hartl, F. orcid id iconORCID: https://orcid.org/0000-0002-7013-5360, Lorusso, G., Evangelisti, M., Schulzke, C. and Baker, R. J. (2014) Thiocyanate complexes of uranium in multiple oxidation states: a combined structural, magnetic, spectroscopic, spectroelectrochemical, and theoretical study. Inorganic Chemistry, 53 (16). pp. 8624-8637. ISSN 0020-1669 doi: 10.1021/ic501236j

Abstract/Summary

A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, nBu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [nBu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV–vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc+, followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO22+. NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8]4– is delocalized over all NCS– ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8]4– (An = Th, U) and [UO2(NCS)5]3– has been explored by a combination of DFT and QTAIM analysis, and the U–N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)–NCS ion is more ionic than what was found for U(IV)–Cl complexes.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/37729
Identification Number/DOI 10.1021/ic501236j
Refereed Yes
Divisions Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Publisher American Chemical Society
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar