Search from over 60,000 research works

Advanced Search

The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements

[thumbnail of Open Access]
Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Chiu, J. C., Holmes, J. A., Hogan, R. J. orcid id iconORCID: https://orcid.org/0000-0002-3180-5157 and O'Connor, E. J. (2014) The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements. Atmospheric Chemistry and Physics, 14. pp. 8389-8401. ISSN 1680-7316 doi: 10.5194/acp-14-8389-2014

Abstract/Summary

We have extensively analysed the interdependence between cloud optical depth, droplet effective radius, liquid water path (LWP) and geometric thickness for stratiform warm clouds using ground-based observations. In particular, this analysis uses cloud optical depths retrieved from untapped solar background signals that are previously unwanted and need to be removed in most lidar applications. Combining these new optical depth retrievals with radar and microwave observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility in Oklahoma during 2005–2007, we have found that LWP and geometric thickness increase and follow a power-law relationship with cloud optical depth regardless of the presence of drizzle; LWP and geometric thickness in drizzling clouds can be generally 20–40 % and at least 10 % higher than those in non-drizzling clouds, respectively. In contrast, droplet effective radius shows a negative correlation with optical depth in drizzling clouds and a positive correlation in non-drizzling clouds, where, for large optical depths, it asymptotes to 10 μm. This asymptotic behaviour in non-drizzling clouds is found in both the droplet effective radius and optical depth, making it possible to use simple thresholds of optical depth, droplet size, or a combination of these two variables for drizzle delineation. This paper demonstrates a new way to enhance ground-based cloud observations and drizzle delineations using existing lidar networks.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/37476
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Copernicus Publications
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar