Search from over 60,000 research works

Advanced Search

On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions

[thumbnail of la4029035.pdf]
Preview
la4029035.pdf - Published Version (2MB) | Preview
Available under license: Creative Commons Attribution
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Mun, E. A., Hannell, C., Rogers, S. E., Hole, P., Williams, A. C. orcid id iconORCID: https://orcid.org/0000-0003-3654-7916 and Khutoryanskiy, V. V. orcid id iconORCID: https://orcid.org/0000-0002-7221-2630 (2014) On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions. Langmuir, 30 (1). pp. 308-317. ISSN 0743-7463 doi: 10.1021/la4029035

Abstract/Summary

Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/35681
Item Type Article
Refereed Yes
Divisions Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Thermal Analysis (CAF)
Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Electron Microscopy Laboratory (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
Publisher American Chemical Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar