Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex

[thumbnail of Optimal convergence_Chernov.pdf]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.
| Preview

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Chernov, A. (2012) Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex. Mathematics of Computation, 81 (278). pp. 765-787. ISSN 1088-6842 doi: 10.1090/S0025-5718-2011-02513-5

Abstract/Summary

In this paper we study convergence of the L2-projection onto the space of polynomials up to degree p on a simplex in Rd, d >= 2. Optimal error estimates are established in the case of Sobolev regularity and illustrated on several numerical examples. The proof is based on the collapsed coordinate transform and the expansion into various polynomial bases involving Jacobi polynomials and their antiderivatives. The results of the present paper generalize corresponding estimates for cubes in Rd from [P. Houston, C. Schwab, E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), no. 6, 2133-2163].

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/33215
Identification Number/DOI 10.1090/S0025-5718-2011-02513-5
Refereed Yes
Divisions No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Publisher American Mathematical Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar