Influence of earthworm Eisenia fetida on removal efficiency of N and P in vertical flow constructed wetland.

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Xu, D., Li, Y. and Howard, A. (2013) Influence of earthworm Eisenia fetida on removal efficiency of N and P in vertical flow constructed wetland. Environmental Science and Pollution Research, 20 (9). pp. 5922-5929. ISSN 1614-7499 doi: 10.1007/s11356-013-1860-1

Abstract/Summary

This study investigates biomass, density, photosynthetic activity, and accumulation of nitrogen (N) and phosphorus (P) in three wetland plants (Canna indica, Typha augustifolia, and Phragmites austrail) in response to the introduction of the earthworm Eisenia fetida into a constructed wetland. The removal efficiency of N and P in constructed wetlands were also investigated. Results showed that the photosynthetic rate (P n), transpiration rate (T r), and stomatal conductance (S cond) of C. indica and P. austrail were (p < 0.05) significantly higher when earthworms were present. The addition of E. fetida increased the N uptake value by above-ground of C. indica, T. augustifolia, and P. australis by 185, 216, and 108 %, respectively; and its P uptake value increased by 300, 355, and 211 %, respectively. Earthworms could enhance photosynthetic activity, density, and biomass of wetland plants in constructed wetland, resulting in the higher N and P uptake. The addition of E. fetida into constructed wetland increased the removal efficiency of TN and TP by 10 and 7 %, respectively. The addition of earthworms into vertical flow constructed wetland increased the removal efficiency of TN and TP, which was related to higher photosynthetic activity and N and P uptake. The addition of earthworms into vertical flow constructed wetland and plant harvests could be the significantly sustainable N and P removal strategy

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/33056
Identification Number/DOI 10.1007/s11356-013-1860-1
Refereed Yes
Divisions Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Publisher Springer
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar