Wirosoetisno, D. and Shepherd, T. G. ORCID: https://orcid.org/0000-0002-6631-9968
(2000)
On the existence of two-dimensional Euler flows satisfying energy-Casimir stability criteria.
Physics of Fluids, 12 (3).
pp. 727-731.
ISSN 1070-6631
doi: 10.1063/1.870280
Abstract/Summary
The energy-Casimir stability method, also known as the Arnold stability method, has been widely used in fluid dynamical applications to derive sufficient conditions for nonlinear stability. The most commonly studied system is two-dimensional Euler flow. It is shown that the set of two-dimensional Euler flows satisfying the energy-Casimir stability criteria is empty for two important cases: (i) domains having the topology of the sphere, and (ii) simply-connected bounded domains with zero net vorticity. The results apply to both the first and the second of Arnold’s stability theorems. In the spirit of Andrews’ theorem, this puts a further limitation on the applicability of the method. © 2000 American Institute of Physics.
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/32848 |
Item Type | Article |
Refereed | Yes |
Divisions | No Reading authors. Back catalogue items Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology |
Publisher | American Institute of Physics |
Download/View statistics | View download statistics for this item |
University Staff: Request a correction | Centaur Editors: Update this record